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ABSTRAC.T 

Studies are   reported  re la t ing  to   the  enhancement  of understanding of 

the roles  played  by  both  binders  and  reinforcements  in  the  attainment 

of advanced  properties  with  f ibrous  composites.   Previous  analyses of 

propert ies   and of efficiency of appl icat ion  are   reviewed  and  extended.  

New analyses   a re   deve loped   for   v i scoe las t ic   behavior   and   for   th ree-  

dimensional   re inforcement .   Resul ts  of mechanical  and  photo~:lastic. 

evaluations of t ransverse   e f fec t ivenesses  of f i lamentary  re inforcement  

a re   p re sen ted .  
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FOREWORD 

This  document is the  annual  report   on  the  program  enti t led  "Study of 

the  Relationship of P rope r t i e s  of Composi te   Mater ia l s   to   Proper t ies  of 

Their  Constituents"  for  the  period  from  September 2 7 ,  1964  to  September 

26 ,  1965. The  program w a s  performed  for  the  National  Aeronautics  and 

Space  Administration  under  Contract  NASw-1144,  and w a s  monitored  by 

IMr. Norman  Mayer  of that  agency. 

In this  report   the  section  "STATUS O F  MICROMECHANICS  STUDIES" 

was  prepared b y  Mr.  Rosen.  The  sections  "THREE DIMENSIONAL RE-  

INFORCEMENT  and  "EXPERIMENTAL  EVALUATIONS O F  TRANSVERSE 

EFFECTIVENESS"  were  prepared by Mr .  DOW,  and  the  section  "STRUC- 

TURAL  EFFICIENCY" w a s  the  resul t  of joint   efforts of these two authors .  

Professor   Zvi   Hashin of the  University  of  Pennsylvania  prepared  the  sec- 

tion  entitled  "VISCOELASTIC  FIBER-REINFORCED  MATERIALS". 

The  authors  wish  to  acknowledge  the  contributions of the  following: 

A. Redner of Photolastic,  Inc.  who  did  the  photoelastic  studies; R .  L. 

O'Brien  who  performed  the  experiments   on  t ransverse  effect iveness ,   and 

0. Winter  for  computer  programming. 
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INTRODUCTION 

Evaluations of composi te   mater ia ls   past   and  present   cont inue  to   em- 

phasize  the  impediment  provided  to  the  attainment of dramat ic   advances  

in   mater ia l   propert ies  by  the  relatively  weak  and  flexible  plastic  binder 

mater ia l s  of current  technology.  The  researches  described  in  this  report  

are   accordingly  directed  toward  the  del ineat ion  and  evaluat ion of the  role 

of the  binder  material  as well as the  filaments  in  the  determination of the 

mechanical   propert ies  - both as regards  s t rength  and  s t i f fness  -, and t h e n  

toward  the  definition  and  investigation of various  ways of alleviating  binder 

deficiencies. 

The  present   report   covers   both  the  areas   out l ined  in   the  f i rs t   paragraph,  

The  f i rs t   par t  of the  report   is   concerned  with  extending  and  carrying  to a 

logical  conclusion  the  efficiency  evaluations  begun  in  Reference 1. Then, 

in  the a r e a  of delineation  and  evaluation of the  role  played  by  the  binder 

mater ia l ,  a review  is   made of the  state of the a r t  of micromechanics  as 

applied  to  composites,   particularly  in  the  l ight of the r e sea rches   a l r eady  

accomplished  in   associated  programs  (References 1 and 2)  to  the  present 

s tudy,   in   order   to   t ie   together   the  var ious  accomplishments   and  extend 

them as required  to   sol idify  the  base  for   fur ther   advances.  As a resu l t  of 

this  review,  progress  in  the  understanding of the  mechanics of tension 

and  compression  fa i lure ,  as w e l l  as the  determinat ion of e las t ic   p roper t ies ,  

is reported  in  the  section  "STATUS O F  MICROMECHANICS  STUDIES1'. 
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The  second  par t  of the   repor t  is concerned  with  advancing  the  know- 

ledge of the  binder-reinforcement   mechanics .   Researches  on  visco-  

e las t ic   behavior   a re   repor ted  in  the  section  "VISCOELASTIC  FIBER  -RE- 

INFORCED  MATERIALS",  and  experiments  on  the  transverse  properties 

of f i lament-binder   combinat ions  are   descr ibed  in   the  sect ion  "EXPERI-  

MENTAL  EVALUATIONS O F  TRANSVERSE  EFFECTIVENESSES O F  

FILAMENTS  OF VARIOUS  CROSS-SECTIONS'.  Finally a method of 

analysis  in  the  section  "THREE-DIMENSIONAL  REINFORCEMENT" is 

developed  for   three-dimensional ly   re inforced  composi tes   to   permit   the  

evaluation of the  elimination of a l l   p lanes  of weakness  through  proper 

fi lament  orientation. 
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STRUCTURAL  EFFICIENCY 

In  the  previous  contract   studies,   (Reference 1 )  the  s t ructural   eff ic iency 

of var ious   mater ia l s   for   she l l   s t ruc tures   subjec ted   to   the   ax ia l   compress ion  

loads  representat ive of launch  vehicles   was  t reated.  In this   approach a non- 

d imens iona l   measure  of the  structural   weight is plotted as  a function of a non- . 

dimensional   measure of the  design  load  ( the  structural   index)  in  such  fashion 

t h a t  the  structure  having  the  least   value of the  ordinate   a t   any  value of the 

absc i s sa  is the  one of minimum  weight  for  that   design  load.  Numerical 

t rea tment  of f ibrous  composites  indicated  that   f iber  winding  patterns  which 

resul ted i n  a mater ia l   that   was  isotropic   in   the  plane of the  shel l   produced 

the  most  efficient  composite  structures.   The  present  contract   studies  have 

resu l ted  in  the  simplification of the  s t ructural   eff ic iency  re la t ions  to  a f o r m  

which  clarifies  the  reason  for  the  previous  result .   Also  the  studies  have  been 

extended to provide a definitive  evaluation of the  influence of individual  consti- 

tuent  properties  upon  the  composite  structural   efficiency. 

Methods of Efficiency  Analysis 

A composite  laminate  can now be   charac te r ized   by  two mate r i a l   p rope r t i e s ,  

when  considered  for   appl icat ion to a cyl indrical   shel l   in  axial compress ion .   These  

parameters   a re   the   e f fec t ive   modulus ,  E, and  the   shear   s t i f fness   ra t io ,  , 

given  by : 

i- ET ET l 1  I 2  
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Where L & T denote  longitudinal  (axial) ,   and  transverse  (circumferential)  

direct ions,   the   resul ts  of the  analysis of Ref. 3 have  been  applied  (Ref. 4)  

to  laminates  which  are  effectively  homogeneous  through  the  thickness.  When 

t ransverse   shear   deformat ions  are neglected,  the  resulting  instability e q u a -  

tion is of the  form: 

where  

z 112 
i s   the   smal le r  of and  unity 

t i s   the   shel l   th ickness   (or   effect ive  thickness  
R for  a sandwich  shell)   to  radius  ratio 
- 

K empir ica l   fac tor   to   account   for   in i t ia l   imperfec t ions ,  
e tc .   (herein,  K is assumed  unity  throughout) 

The  buckle   pat tern  is   e i ther  of the   symmetr ic -or   be l lows   type-or   the  

asymmetr ic -or   checkerboard   type-as  x is g rea t e r   o r   l e s s   t han   one ,   r e -  

spectively.   Thus,   shells  having a low  shear  st iffness  ratio  will   buckle  in 

a checkerboard  pat tern.  As the  shear  st iffness is increased,  while  the 

effective  modulus, E, is held  constant,   the  shell   will   reach  the  point  where 

the  lowest   buckl ing  s t ress   is   associated  with  the  symmetr ic   mode.   Beyond 

th is ,   any   fur ther   increases   in   the   shear   s t i f fness   ra t io   wi l l   have  no effect  

on  the  buckling  stress. 

In terms of the  s t ructural   eff ic iency,   the   e las t ic   behavior   can now be 

represented  by  the  following  simple  expression: 
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r 

where 

W 
R 
- 

W 

R 

P s  

Nx 

shell   weight  per  unit   surface  area 

she l l   rad ius  

she l l   mater ia l   dens i ty  

shel l   load  per   uni t   c i rcumferent ia l   length 

In  the  above  equations  i t   is   seen  that   for  an  isotropic  material:  

i j =  X = l  

and: 

An isotropic  material   can  be  obtained  with a fibrous  composite  by  selecting 

a fiber  orientation  pattern  in  which  one  nth of the   f ibers   a re   o r ien ted   in   each  

o f  n equaily  spaced  directions  (with n 2 3)  and  with  many  layers  s o  that  the 

ma te r i a l  is effectively  homogeneous  through  the  thickness.  Such a ma te r i a l  

has  been  shown  to  be  the  most  efficient  for  the  launch  vehicle  application 

(Ref.  1). Typical   resul ts   which  i l lustrate   both  the  benefi ts  of an   i so t rop ic  

pattern  and  also  the  influence of shear   s t i f fness   a re   shown  in  Fig. 1. Here  

the  elastic  efficiency is character ized  by  the  s lope,  F, of the  curve  re la t ing 

weight  to  the  square  root of the  loading  index, i. e. : 

W - 
R F =  
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E-glass   re inforced  epoxy  composi tes   containing  seventy  percent   f ibers ,   by 

volume, a r e  considered  for   var ious  f iber   or ientat ions.   The  upper   curve is 

a lungitudinal/circumferential ( o r  Oo/9O0) laminate  of varying  f ract ions of 

thl :  111aterlal In each  dirrcl ion.   The  next   curve is for  a symmetr ic   he l ica l  

pat tern (i e ) of varying  helix  angle.   The  straight  l ine  is   the  isotropic 

Ixit tcrn  and  the  weight  reduction  associated  with  this  pattern  is   evident.  

I t  is u l  in tercst  I C ,  nuic   a lso that the  efficiency of a f45O  laminate 

, 1 1 1 c l  J. half and  half O u - O O L J  laminate  a r e  ident ica l .   These   s t ruc tures   a re  of 

t t ~ c  sanle  ma te r i a l  hilt one has the  material   principal  axes  rotated  450  with 

~ - c s p c ( . t  t u  the  other.  'This  rotation  does  nut  have  any  effect  on  the  buckling 

s t rength u i  ttlc  corrlpusite  shell.  However,  the  shear  stiffness  ratios  differ 

substant ia l ly   and  the  buckle   modes  are   different .   The  hel ical   pat tern  shel l  

b u c k l e s  syrnrnetrically at  this  point  and  the O 0 - 9 O o  shel l   buckles   asymmetr ical ly .  

When a shel l   i s   made  with a mater ia l   conta in ing   equal   par t s  of these two  biaxial 

la tninates   the  resul t  is a mater ia l   which has 257% of its ma te r i a l   eve ry  45'. 

'1'111s is an  isotropic  pattern  and  has  the  high  strength  (or  low  weight)  shown 

b y  the  lowest  line of Fig. 1. The  halves of the  two  biaxial   materials  when 

put  together  buckle  at  higher  loads  than  shells of each  alone  because of the 

conflict  in  buckle  patterns. 

Equations ( 2 )  and (3 )  apply  to  simple  monocoque  shells. A s  has   been  

shown,   for   the  major i ty  of c a s e s  of interest   for   launch  vehicles ,   s t i f fened 

she l l s  are  more  efficient  than  monocoque  construction.  Accordingly,   to 

investigate  the  potential of f ibrous  composi tes   for   s t i f fened  shel ls ,   an 
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idealized  stiffening  was  hypothesized;  the  shells  were  assumed  made  in 

the  form of a sandwich  with  an  ideal  core  material   having  adequate  st iff-  

ness  properties  through  the  thickness  to  stabil ize  the  faces,   but  having  no 

abil i ty to carry  axial   load.   The  e las t ic   buckl ing  eff ic iency  for   sandwich 

shells  with  such a core  is   g iven  by  Reference 4. 

where 

P S I  PC 
densi t ies  of face   and   core   mater ia l s  

t , t thicknesses  of face   and   core   mater ia l s  
s c  

In a l l   cases ,   minimum-weight   sandwich  proport ions  were  used,   wi th  the 

optimum  ratio  of?  found  from  the  equation t 

2t 
S 

For   s t r e s ses   above   t he   e l a s t i c   r ange  (as in  Reference 4) 

where  

is the  compressive  "yield" or  f a i l u r e   s t r e s s   f o r  
the   face   mater ia l s  

As brought   out   in   Reference 1, the  determinat ion of a real ly   adequate  
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value O f 6  fo r   f ib rous   composi tes   i s  a p rob lem  fo r   fu r the r   r e sea rch ,  

and  conclusions  drawn  regarding  the  potential  of t h e s e   m a t e r i a l s   f o r  

those  ( l imited)  applications  for  which  Equation 7 is used  lliust b e  S O I I I C L -  

Y 

what  qualified.  For  launch  vehicles,  however,  elastic  buckling  is  the 

dominant   cr i ter ion.  

Equations 1 through 7 were  used  in   References 1 and 5 to  evaluate the 

efficiency of composite  shells  having a wide  range of const i tuent   propert ies  

and  geometr ies .   The  present   extension of these  s tudies   concentrates  upon 

the  presentat ions of the  influence of individual   const i tuent   propert ies  upon 

the  composite  structural   efficiency. 

The  e las t ic   constants  of Equation 1 were  evaluated  by  the  methods of 

Reference 6 .  The  range of loading  intensities  used i n  Equations 3 and 5 

were  based  on  the  boosters   descr ibed  in   Table  1. 

Materials   and  Configurat ions  Considered 
1 

The  mater ia ls   and  configurat ions  considered  for   the  launch-vehicle  

shel l   appl icat ion  fe l l   in to   several   c lasses ,  as follows: 

(a) Meta ls  - F i r s t  a family of metal   shel ls   was  analyzed to provide 

a basis   for   comparison  with  the  composi te   shel ls .   This   metal   family  com- 

pr i sed  a steel ,   t i tanium,  aluminum,  magnesium,  and  beryll ium  alloy  with 

the  advanced  properties  postulated  in  Table 2. These   p rope r t i e s   were   de -  

l iberately  chosen  to   be  high  re la t ive to  present   technological   values  to  insure  
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a high  s tandard  for   the  comparisons  with  composi tes .  

(b)   F i laments  - A family of e ight   f i l amentary   mater ia l s   was  

scalectcd for   use  in   the  composi tes .   These  mater ia ls   began  with  the 

presently  used  E-glass  in  both  solid  and  hollow  fibers  and  ranged  upward 

in character is t ics ,   including:  

High-Modulus  Glass 
Asbestos  
Stee 1 
Beryl l ium 
Boron 
.and  Alumina 

The   proper t ies   used   for   these   var ious   f i l amentary   mater ia l s   a re   g iven  in 

Table 3. 

(c )   Binders  - A family of e ight   b inder   mater ia l s   was   a l so   se lec ted  

into  which  the  various  f i laments  were  incorporated.   The  binders  began  with 

the  present ly   used  epoxy  res in   and  ranged  upward  in   propert ies ,  as follows: 

Magnesium 
Three  hypothetical   "Light  Alloys" 
Titanium 
Steel 
Boron 

The   proper t ies   used   for   these   var ious   b inder   mater ia l s   a re   a l so   l i s ted   in  

Table 4. 

(d)  Configurations - All   she l l   composi tes   were   cons idered   to   be   l ami-  

nates  with  each  lamina  unidirectionally  reinforced  by  the  f i lamentary material. 

The  direct ions of re inforcement  of the   l aminae   were   var ied   in   symmetr ic  

fashion  such  that   the   pr incipal   s t i f fnesses  of the  laminate  always  coincided 

with  the axial and   c i rcumferent ia l  shell direct ions.   The  number of laminae 



was supposed  great  enough so that  the  laminate  acted  like a homogeneous 

med ium,   - i .   e . ,  no  attempt  was  made  to  dispose  internal  and  external 

laminae  in  different  fashions.  Thus  typical  configurations  includcd: 

(1) longitudinal  reinforcement;  ( 2 )  t ransverse   re inforcement ;  ( 3 )  longi- 

tudinal   and  t ransverse  re inforcement;  (4 )  re inforccmcnt   a t   equa l  a n g l e s  

(t - 9) to  the  longitudinal o r  t ransverse  direct ions;   and ( 5 )  th ree  w a y  (+ 30°, 

90 ' )  reinforcement  to  provide  in-planc  isotropy. 

- 

In order   to   help  isolate   the  importance of various  factors  on  the c>nd 

efficiency of composi tes ,   the   f i lamentary  and  binder   mater ia ls   were 

selected  to   provide  several   in terrelated  systematic   types of var ia t ions.  

These   in te r re la t ionships   a re   ind ica ted   on   F igure  2.  The   mat r ix   matcr ia l  

properties  plotted  in  Figure 2 show  that: 

(1) The  magnesium,  t i tanium,  and  s teel   mater ia ls   provide a var i -  

ation  in  modulus  at   constant  modulus-to-density  ratio.  

(2)  The  magnesium,  "light  alloy II", "light  alloy III", and  boron 

mater ia l s   p rovide  a variation  in  modulus  at   constant  density.  

( 3 )  The  "l ight  al loy I",  "light  alloy  II",  and  titanium  provide 

a var ia t ion  in   densi ty   a t   constant   modulus,  as do  the  "light  alloy  III", 

and   s tee l   a t  a different  constant  modulus.  

The   f i be r   ma te r i a l s   were   s e l ec t ed  to  cover  the  range of ac tua l   p rospec ts  

f rom  those  now in   ac tua l   use   l ike   E-g lass   to   those   which   a re   more   in   the  

nature  of laboratory  cur iousi t ies   l ike  a lumina.   (The  f iber   propert ies   are  

presented  in  Figure  2b.)   'Thus  approximately  the  entire  spectrum of 
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proper t ies   o f   cur ren t   in te res t  is  surveyed as wel l  as those  port ions 

of the  spectrum  which  provide  systematic  variations.  

Resul ts   and  Discussion 

The   resu l t s  of the  evaluations of composi te   she l l   e f f ic ienc ies   a re  

d iscussed   here  i n  sect ions.  In the f i rs t   sect ion  the  interplay  between 

the  magnitude of the  design  loading  and  the  structural   configuration 

employed  to  support  the  toad is considered,   to   insure   that   the   resul ts  

a r e  not inequitably  influenced  by  the  configurations  chosen. In the 

second  section,  the  conclusions  drawn  from  this  consideration of the 

significance of configurat ion  are   focussed upon the  evaluation of hol- 

low f iber   re inforcement .   Here  some of the  aspects  of the  importance 

of f iber   s t i f fness   a re   f i r s t   demonst ra ted ,   and   then   they   a re   examined   in  

detai l  in  the  third  section.  Finally,  the  importance of binder   s t i f fness  

is a s s e s s e d .  

Effects of Configuration 

Metal  Shells - The  basis   used  for   the  evaluat ions of f ibrous  composite 

shel ls  is  es tabl ished in F igure  3 .  Here  are   plot ted  the  weights  of cylin- 

d r i ca l   she l l s  of a wide  range of types of metals,   and  fabricated  in a var ie ty  

of sandwich  proport ions,   designed  to   carry  intensi t ies  of loadings of f r o m  

a smal l   f rac t ion   of - to   many  t ime  those-appropr ia te   for   l aunch   vehic les ,  

as  shown.  Characterist ically a shel l  of any   ma te r i a l  is heavier  than  the 

the  weight   required  to   carry  the  design  load at the material y i e l d   s t r e s s  

( represented  by  the  l ines  of 45 s lope  a t   the   r ight  of F igu re  3) by  the 
0 
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weight of the  addi t ional   mater ia l   needed  to   s tabi l ize   the  shel l   against  

buckling.  Generally  speaking  the  greatest   weight  is   required  with  the 

st iffening  added  simply as  increased  shel l   th ickness ,   g iving a pure  mono- 

coque  construct ion  ( the  upper   curves   on  the  f igure) .   For   the  monocoque 

buckling  below  the  yield  stress,  the  weight is proport ional   to  f as  i s  

F 
well  known,  and  beryll ium  is  a currently  recognized  minimum-weight  metal  

for  the  idealized  monocoque  shell, - especially  in  the low loading  intensity 

reg ime of interest   for   launch  vehicles .  

Clear ly ,   however ,   F igure  3 shows  that   for   the  mctal   shel l   more is to  

be  gained  by a change  f rom a monocoque  to  an  efficient  st iffening  configur- 

ation  l ike a low-densi ty-core-mater ia l   sandwich  than  by  the  use of even 

such  an  eff ic ient   mater ia l  as beryl l ium. In fac t  a steel  faced  sandwich  with 

a l ight  core  may  be  l ighter  than a beryllium  monocoque  shell,  -indrcd  will 

be  l ighter  than a beryl l ium  faced  sandwich  on  the same c o r e  if the  core  

d e n s i t i e s   a r e  low enough o r  the  loading  intensit ies  high  enough  (the  area 

shown  to   the  r ight   of   Figure 3)  so that  the  higher  strength-to-weight  ratio 

of steel compared  to   beryl l ium  can be utilized. 

Important  to  the  composite  evaluations  to  which  this  study is d i rec ted  is 

the  implication of the  preceding  paragraph  that   the   opt imum  mater ia l   de-  

pends  upon  both  loading  that   must  be  carried  and  upon  the  structural   config- 

uration  employed.  In  consequence  both  the  range of loadings  and  range of 

configurations of i n t e re s t   mus t  be   surveyed   for   p roper   assessment  of the 

potentials of composi tes .   Herein  the  effect  of varying  overall   configuration 

12 



i s   de te rmined  by a variation  in  the  hypothetical   sandwich  core  density.  

The   resu l t s  of th i s   var ia t ion   a re   genera l ly   the   same as var ia t ions i n  

the  effectiveness of other   types of stiffening.  Thus, a very  l ight  weight 

core   represents   to  a degree,   for   example,   very  eff ic ient   integral   r ibbing 

on  the  shell ,   or  highly  efficient  r ing-stringer  reinforcement.  

One fur ther   aspec t  of the  importance of configuration  in  the  evaluation 

of mater ia l   eff ic iency  is   brought   out   by  the  reference  shel l   eff ic iencies  

calculated  for  the  variables  included  in  Figure 3. Whereas   for   the   e las t ic  

monocoque  shell  the  weight is proportional  to - P as previously  noted, 

G 
this  relationship  does  not  apply  for  sandwich  shells  even  for  the  heaviest  

core  density  given  in  Figure 3. F o r   v a l u e s  of the  ratio of face  sheet  to 

core  densit ies  large  compared  with  unity,   i t   can  be  shown  that  the  shell  

weight  for a given  core   densi ty  is proportional  to p / E .  The  shel l   weight  

requi red  in the  e las t ic   buckl ing  range  may  be  measured  s imply  by  the 

r 
eff ic iency  parameter ,  F, of Equation 4. H e r e  F is a function of shel l  

moduli  and  density.  Values of F are   p lo t ted   in   F igure  4 for  monocoque 

and  sandwich  shells of the  f ive  metals   used  in   Figure 3. As shown,  values 

of F for  the  monocoque  configuration  plot   on  the  expected  straight  l ine of 

45 slope  when  the  abscissa  is but   for   the  sandwich  the  abscissa   must  0 

/ 
be  changed  to . Thus  even  for  elastic  buckling  the  configuration 

affects   the  re la t ionship  between material propert ies   and  shel l   eff ic iency,  

I 

though  perhaps  not as profoundly as when a change   f rom  e las t ic   to   p las t ic  

behavior is involved. 



Composite  Shells - With fibrous  composites  additional  degrecs of 

f reedom are available  compared  to  metal   construction. Not  only tnay 

each  reinforcing  material   be  employed  in a var ic ty  ai I,indcr ma tc r i a l s ,  

but also various  volume  f ract ions of the  consti tuents a n d  f iber   or ientat ions 

m a y  be  used.  Typical  effects of binder  content a r c  i l lustrated  in   Figure 5 .  

Figure  5 shows  the  elastic  buckling  efficiences at  a typical sandwich  core 

densi ty ,   and  hence  appl ies   to   the low load end of t h c .  range. Variations  in 

clastic  buckling  efficiency as measured  by  the  valucs of F plotted i n  Figure- 5 

a re   ra ther   surpr i s ing   in   tha t   re la t ive ly   smal l   concent ra t ions  of the  high- 

modulus  f i laments  are  sufficient  to  produce  materials  with  buckling  effcctivc.-  

ness   comparable   to   s t ructural   metals .   Accordingly,   for   the  very  l ight  

loading  for  which  strength is not  important,  low vo lume  f rac t ions  of advanccd 

f i laments   may be of in te res t .  

Disappointingly  inefficient are the   resu l t s   for   the  hollow E-glass  f i lament s. 

These  resul ts   have  suff ic ient ly   sweeping  implicat ions  regarding  geometr ical  

effects to warrant   special   a t tent ion,   and  some of these  implicat ions  are   therc-  

fore  reviewed  in  the  following  section  on  the  effects  associated  with  the  use 

of hollow  fibers. 

Effects  of Hollow F i b e r s  

Hollow  fibers  provide a reduct ion   in   dens i ty ,p  , of composi te   mater ia l  

together  with a high  ul t imate   compressive  s t ress-densi ty   ra t io   (Rclerence 7). 

At the same t ime  the  hol lows  reduce  the  e las t ic   s t i f fnesses   and  the  absolute  

S 

\ 
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values  of s t rength.   Because of these  reduct ions,   wi th   E-glass ,  as 

pointed  out  in  the  preceding  section,  for  sandwich  shell  faces  the hollows 

a r e  not  effective,  and  indeed  compared  to  metal  shells,  hollow  E-glass 

reinforcements  appear  at tractive  only  for  monocoque  shells.  

Factors   which  combine  to   make  hol low  E-glass   ineffect ive  are  (1) 

the  fact   that   for  a sandwich  face  material ,   density  is  not as important  a 

charac te r i s t ic  as for  a monocoque  shell,  and (2)  the  low  transverse stiff- 

ness  properties  calculated  for  the  hollow  fibers.  As previously  pointed 

out,  for a sandwich  the  efficiency  varies  inversely as only  the  square 

root of the  face  material   density,   where  for  the  monocoque  the  efficiency 

va r i e s  as the  inverse  first power of the  densi ty .   The  low  t ransverse 

st iffness  found  for  the  hollow  glass is a less   obvious  problem,  however ,  

that   deserves   fur ther   considerat ion.   Perhaps,   for   example,   the   analysis  

of the  hol low  f iber   t ransverse  s t i f fness  is more  open  to   quest ion  than  the 

sol id   f iber   calculat ions.   For   both  types of f ibers   the   va lues   used   a re   the  

average  of upper  and  lower  bounds  but  in  the  case of the  solids  the  bounds 

are not far a p a r t  SO that   th is   procedure is open to no  substantial   variation  no 

matter  which  bound is the  more  applicable.   For  the  hollows, on the   o ther  

hand  the  upper-bound  transverse  st iffness  at  30% binder is approximately 

.@vice the  value  for  the  lower  bound. Thus, the   hol low  f ibers   may  be  ap-  

preciably  bet ter   (or   even  worse)   than  the  mean  value  indicates .  

Regard less  of the   accuracy  of analysis ,   perhaps of grea te r   s ign i f icance  



for   fu ture   p rospec ts  is the  fact   that   s t i f fer   mater ia ls   than  E-glass   should 

perform  bet ter   t ransversely  in   an  epoxy  matr ix .   This   effect   i s   i l lust ra ted 

in   Figure 6 where  the  calculated  ra t ios  of t ransverse   s t i f fness  (uppc,r a n d  

lowcr  bounds)  for  hollows  and  solids  are  plotted  against   volume  fraction 

of binder  for  alumina  and  E-glass  f ibers.   The  curves  for  thc  alumina n r ~ .  

above  those  for  E-glass  over  the  entire  range of concentrations,  being 

about  twice as g r e a t  at the  normal 30 volume  percer?t  binder. In other   words 

not  only is the  t ransverse  s t i f fness   inherent ly   higher   for   a lumina  than E- 

glass  reinforcement,   but  also  the  hollow  alumina  performs  twice as wcll  

compared  to  solid as the  E-glass  does.   In  sum,  hollow  E-glass  f ibers  in 

epoxy  binder  appear  promising  only  for  increasing  the  efficiency of she l l s  

in appl icat ions  for   which  mater ia l   densi ty  is of pr ime  importance,  as for  

monocoque  const.ruction.  Hollow  filaments of higher  modulus  than  E-glass 

may  be  re la t ively  more  favorable .  

The  Importance of Fiber  Stiffness  and  Density 

That   the  use of high  modulus/densi ty   ra t io  filame nts  like b 'or 

increase   the  elastic buckling  efficiency of composi te   shel ls  is to  be  expected, 

and  the  effect  is demonstrated  by  the  values  of F given  in   Figure 5 f o r  

sandwiches  and  Figure 7 for  monocoque  construction. In order   to   de teymine  

j u s t  how  effective  improvements  in  filaments  may  be,  the  filament  density 

and  modulus  will  be t reated  separately.   The  face  sheet   densi ty  is related  to  

the  f iber   and  binder   densi t ies   by a s imple  mixtures   rule .   When  the  f iber  

weight is a large  f ract ion of the  composite  weight, as it is for  high  volume 

f rac t ions  of most   f iber   mater ia l s ,   then   the   var ia t ion  of F with  fiber  density 
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i s  of essent ia l ly   the   same  form as that of the  variation  with  face  density 

( i . e . ,   wi thp   for   monocoque   andp  for   sandwich   cons t ruc t ion) .   The  

var ia t ion of weight  with  modulus  is  most  readily  studied  by  plotting F as  

112 

f f 

a function of E for  the  family of constant  density  f ibers  shown  in 

Figure  2b.   For  example,   Figure 8 presents   such  resul ts   for   sandwich 

f 

shells  having  isotropic  and  uniaxial  face  sheets.  The  slope of the   bes t  

f i t  s t ra ight   l ines   can bcs used  to  determine  the  exponent of f iber  modulus 

in  the  assumed  weight  variation: 

F = K p  E m n  
f f 

These  results  are  combined  to  yield  the  results  shown  in  Figure 9. The  

exponents  have  been  rounded off to   f rac t iona l   powers  as g rea t e r   accu racy  

is certainly  not  justified at the   p resent .   S imi la r   resu l t s   a re   p resented   in  

F igure  10 for  the  monocoque  shell .   Correlation of the  data   are   indicated 

by  comparison  with  curves of 45  slope  on  the  log-log  plots of the  f igures .  

Approximate  correlation  is   found if the  following  powers of Young's  modulus 

0 

are   employed:  

1 
( 2 )  F - E 1 / 3  

f 

( 3 )  F o c  1 

for  0 reinforced  monocoque  shells 0 

for  Isotropic  monocoque  shells 

for  0 re inforced  sandwich  shel ls  
0 

for   Isotropic   sandwich  shel ls  



(Cor re l a t ion   i s   e s t ab l i shed  as  for   the metal shells  by  comparison  with 

cu rves  of 45O slope  on  the  log-log  plots of the   f igures . )  

Thus  i t   appears  that   the  elastic  buckling  efficiency  of  composite  shells 

is a rather   insensi t ive  funct ion of the  modulus of the   f ibers .   For  thc, 

configuration of greatest   probable   interest ,   however ,   ( the  isotropic  

sandwich) ,   the   sensi t ivi ty   is   greatest ,   and  in   this   case  an  incrcase in  f i I 3 c . r  

modulus   is   near ly  as  effective as  a decrease  in   f iber   densi ty .  

Throughout  this  section  only  epoxy  binder  at  30% volume  f ract ion  has  

been  considered.  Effects of binder   changes  wil l   be   considered  in   thc 

following  section. 

The  Importance of Binder  Stiffness  and  Density 

The   use  of improved  binder   mater ia l   compared to  epoxy  resin  can  have 

severa l   impor tan t   e f fec ts .  First, by  enhancing  the  t ransverse  and  shear ing 

stiffnesses,   i t   can  reduce  the  difference  in  buckling  efficiencies of the 0 
0 

and  Isotropic   re inforcement   configurat ions.   This   effect   i s   i l lust ra ted  in  

F igure  11. 

In   F igure  11 are  plotted  the  buckling  effectivenesses of composite  sand- 

wiches  made  with  very  high  modulus  f i laments  l ike  alumina  embedded in 

a var ie ty  of metal l ic   binders .   The  plots  show tha t   for  all binder  volume 

f r ac t ions   t he re  

configurations,  

is l i t t le  difference  in  efficiency  for  the Oo and  Isotropic 

although  the  Isotropic cases a re  always  the  l ighter.   For 
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comparison,  the F va lue   for   bery l l ium  sandwiches   i s   a l so   g iven   on   the  

f igure;   for   purely  e las t ic   buckl ing  i t   i s   exceeded  in   eff ic iency  only  a t  

high  volume  fractions  by  thc  boron-like  binder.   However,   i t   should  be 

recalled  that ,   even  for  the low loading  intensities of launch  vehicles,  

such  beryll ium  sandwiches  would  be  stressed  beyond  thc  elastic  l imit ,  

and  any of the  a lumina-reinforced  composi tes   would  therefore   be  more 

efficient  in  application. 

The  effectiveness of improvements   in   binder   mater ia l   propert ies   is  

s imi l a r  t o  that of f i lament  properties.   Even  with  an  ,advanced  f i lament 

like  boron,  the  buckling  efficiency  is  improved  compared  to  epoxy  binder 

by e i ther   an   increase   in   b inder   modulus   o r  a decrease   in   b inder   dens i ty  

(see F igure  12).  Evaluation of the  magnitudes of the  improvements  

(F igu re  13) show  that  they  depend  only  on  the  one-sixth  power of the 

modulus,   for  monocoque  rather  than  sandwich  shells  again  the  density 

is of greater   s ignif icance,  F d  approximately.  

Conclusions 

The  conclusions  der ived  f rom  the  complete   invest igat ion of the  influence 

of consti tuent  properties  upon  the  efficiency of composi te   shel ls  are as  

follows: 

1. Loading  intensit ies  for  launch  vehicles a r e  so low  tha t   e las t ic  

buckl ing  governs  the  compression  design  for  all but  the  most  efficient  st if-  

fening  configurations. 



2. For  sandwich  construction  the  elastic  shell   buckling  efficil-ncy 

is no  longer  proportional t o  the r a t io  of shel l   densi ty   to   the  square 

root  of Young's  modulus as  f o r  a monocoque  shell ,   but  rathcr 

E 
is  proport ional   to   for  t h e  sandwich  face  material .  

3. Cornpositcs r e i n ( o r r a b ( 1  i n  an isotropic  laminatc  configuration 

by  advanced  f i laments l i l cc .  I)IJI .OII  and  alumina  are  superior L O  the bcsi  

mcltal  shells  for  thc most s t ructural ly   eff ic ient   appl icat ions for 1aunc.h 

vc,hiclcs. 

4. Relat ively  small   conccntrat ions of high-modulus  f i laments i n  an 

isotropic   configurat ion  produce  mater ia ls   with  buckl ing  c i iect ivencss  

comparable   to   s t ructura  1 t-nc*tnls. 

5. Hollow  fibers  appear  promising  only  for  shell   buckling  applications 

for   which  densi ty  is  of pr ime  importance,   ( for   example;   tnonocoquc  shl , l ls ,  

min imum-gage   cases) .  

6. Thc  re la t ion bctwc.cn shell   buckling  efficiency  and  f i lament prol)c , r t jes  

varics  with  configuration. In general   the   eff ic iency is  a weak t'unctitjrl S J ~  

the  f i lament  modulus  and a s t ronger   funct ion of filament  d(.nsity. For  t h e  

most   eff ic ient   configurat ion  ( isotropic   laminate   sandwich)   the  eff ic iency 

i s   p ropor t iona l   to   the   square   roo t  of the  f i lament   densi ty   and  s l ight ly  Ivss 

than  the  square  root  of thc   inverse  of the  modulus. 

7. The relation  between  shell   buckling  efficiency  and  binder  properties 

is   s imilar   to   that   for   f i laments   but   is   an  even  weaker   funct ion.   ' rhus,  for 

the  isotropic  sandwich  shells  the  efficiency is approximately  proport ional  



to  the  one-sixth  power of the  densitylmodulus  ratio.  

8. Fa i lu re   c r i t e r i a   fo r   compos i t e   she l l s   need   fu r the r   i n t ens ive   i n -  

vestigation.  Such  problems as  those of max imum  shea r   s t r e s ses   i n  

laminates  in  compression  need  evaluation. 



STATUS O F  MICROMECHANICS  STUDIES 

During  the  course of this NASA sponsored   program  for   the   s tudy  of 

composi tes   (see  Refs .  I and 2 ) ,  the  authors  have  undertaken  studies of those 

aspec ts  of the  mechanics of composi tes   which  are  on  the  one  hand  necessary 

to  provide  an  understanding of the  synthesis ,   design  and  response of compo- 

s i te   s t ructural   laminates   and  which,  on  the  other  hand,  have  not  been  ade- 

quately  t reated  in   the  exis t ing  l i terature .  It i s ,  therefore ,   appropriate  

a t   th is   t ime  to   discuss   the  re la t ionship of these NASA contract   resul ts   to  

other  related  studies  in  the  open  l i terature.   The  aim of this  review  is   not 

to  provide a comprehens ive   c r i t i ca l   l i t e ra ture   survey ,   bu t   ra ther   to   examine  

a l imited  number of existing  solutions of problems of interest   for   subsequent  

s tudies .   The  s ta tus  of the  micromechanics   s tudies   to   be  used  in   this   program 

will   thus  be  defined. 

A concept  which  simplifies  many  aspects of the  analysis of composite 

m a t e r i a l s  is the  recogni t ion  that   for   most   s ta t ic   loading  condi t ions,   the   f iber  

cross-sect ional   dimension is smal l   compared   to   the   s t ruc tura l   d imens ion  

and  to  the  dimension over which a significant  variation  in  applied  load or dis  - 

placement  occurs.   Thus  i t  is reasonable   to   consider   the  average  s t ress   and 

s t ra in   in   the   composi te ,   ra ther   than   the   ac tua l   s t ress   and   s t ra in   d i s t r ibu t ion .  

This   permits   the  representat ion of the  inhomogeneous  isotropic  composite 

by an  equivalent  homogeneous  anisotropic  material   where  the  response of the 

latter to   imposed  boundary  t ract ions  or   displacements  is equal  to  the  average 

response  of the  former  to   the  same  boundary  condi t ions.   Several   approaches 
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to  the  problem of relating  the  elastic  constants of the  "effective"  material   to 

the  propert ies   (mechanical   and  geometr ical)  of the   cons t i tuents   a re   t rea ted   in  

the  following  section.  Although  the  understanding of average   response  is a d e -  

quate   for   many  s t ructural   appl icat ions,  a t rea tment  of composi te   s t rength 

genera l ly   requi res  a knowledge of some  de ta i l s  of t he   i n t e rna l   s t r e s s   d i s t r ibu -  

tion.  Analyses of these   s t resses   a re   descr ibed   under   " In te rna l   S t resses" .  

The  utilization of the  internal   s t ress   solut ions  in   the  t reatment  of composite 

s t rength is described  in  the  "Failure  Mechanics"  section. 

The  elastic  constants  analyses  define  the  moduli of the  individual  layers 

of a composi te   laminate .   The  fa i lure   mechanics   s tudies   l ikewise  def ine 

lamina  s t rength  cr i ter ia .   The  resul ts  of these  studies  can  then  be  used  to 

def ine  overal l   laminate   s t i f fness ,   s t rength  and  s t ructural   performance.  For 

this  aspect of the  study, a substantial  body sf li terature  developed  for  plywood- 

type  mater ia ls ,   among  others ,  is in  existence.   The  applicabili ty of these 

s tudies  is presently  being  evaluated  (an  indication of this  is   given  elsewhere 

in  this  report  in  connection  with  the  stability of laminated  shel ls) .   For   this  

reason   and   because  of the  existence of severa l   recent   l i t e ra ture   rev iews  on this  

subjec t   (e .g . ,   Ref .  8 and 9). The  present  survey  does  not  include  the  subject 

of laminate   analysis .  

Elas  tic  Constants 

The  direct   approach  to  the  evaluation of e las t ic   constants  is to   determine 

the  s t ress   dis t r ibut ion  in   the  inhomogeneous  composi te   medium  subjected  to  

various  simple  boundary  conditions  and  then  to  obtain  appropriate  body  averages.  

These  boundary  value  problems  require   the  complete   specif icat ion of the  phase 

geometry  (e.  g .  , the   re la t ive  locat ion of f ibers   over   the   c ross   - sec t iona l  



plane  normal   to   the  f iber   axes)   and  the  extensive  appl icat ion of numerical  

methods.   This  approach  has  recently  been  uti l ized  for a hexagonal   array 

(Ref. 10) and a s q u a r e   a r r a y   ( R e f .  11) of c i rcu lar   f ibers .   These   methods   p ro-  

duce   the   des i red   resu l t s   for  a known geometry  (although  requiring  the 

use of high  speed  computers) .   However ,   they  do  leave  unanswered  the q u r s -  

tion of the  magnitude of possible  variations  in  moduli  associated  with  the 

var ia t ion  in   cross   -sect ional   locat ion of f ibers .  

A second  approach  to   this   problem  ut i l izes  known and  regular  phase 

geometr ies   and  gross   approximations to the  nature of the  s t ress   f ie ld .  T h u s  

the  mater ia ls   are   usual ly   represented  as   var ious  combinat ions of s imple 

e lements   in   se r ies   and   in   para l le l   wi th   one   another   (e .g . ,   Ref .  12 and 13). 

P a p e r s  of this  type  range  from  simple  approximations of the  stiffness  parallel 

to   the  f ibers   to   t ransverse Young's and  shear  moduli   obtained  by  assuming 

uni form  s t ra in  01 I,y assuming  that   the   mater ia l   can be represented by a t ~ u s s ,  etc. 

These  methods  can  be  justif ied  as  providing  working  estimates  only if  no 

be t te r   methods   a re   ava i lab le .   Thus   a t   the   p resent   s ta te  of development  they 

a r e  not of major   importance.  

The  third  approach  to  the  elastic  constants  problem is the  use of v a r i -  

ational  principles  to  obtain  bounds  on  the  desired  moduli .  In this  method 

the   e f fec t ive   e las t ic   modul i   a re   expressed   in   t e rms  of the  s t ra in   energy  and 

bounds  on  the  strain  energy  are  found  for  simple  applied  average  stress 

and  s t ra in   f ie lds ,   thus   a lso  bounding  the  e las t ic   moduli .   This   def ini t ion 

of moduli  in terms of s t r a in   ene rgy  is directly  equivalent  to  the  definition 

in   t e rms  of ave rage   s t r e s s   and   s t r a in .  In the  previous  contract   s tudies  
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(Ref. 2 ) ,  st rain  energy  methods  were  used  to   evaluate   e las t ic   constants  

as functions of consti tuent  moduli   and  volume  fractions.   Uniaxially  oriented 

c i rcu lar   f ibers   randomly   d i s t r ibu ted   over  a c ross -sec t iona l   p lane   were   con-  

sidered.  Such a mater ia l  is t ransverse ly   i so t ropic   and  is defined  by  five 

independent  elastic  constants.   These  constants  can  be  bounded  for  several  

different  types of geometr ies .  

Severa l   geometr ies  of in te res t   a re   shown  in   F ig .  14. The  hexagonal 

array  is   typical  of the   o rdered   a r rays   which   a re   suscept ib le   to   r igorous  

bounding  procedures .   The  contrast   between  such  order ly   arrays  and  the 

arrays  which  resul t   f rom  common  manufactur ing  procedures   are   indicated 

by comparison of the  upper  two  sketches  in  Fig. 14. Indeed,  the  contiguity 

between  the  f ibers  shown  in  cross  sections of rea l   f ib rous   composi tes   has  

motivated  some  interest   in   the  possible   effect  of continuous  or  semi-continuous 

load  t ransmission  paths   through  the  f iber   mater ia l .   The  extreme of such 

geometr ic   cons idera t ions   i s   represented   by   the   a rb i t ra ry   phase   geometry   in  

which  both  phases   are   cyl indrical   but  a cross-sect ion  perpendicular   to   the 

generator  of the  phase  geometry  interfaces  is completely  arbi t rary  and a 

distinction  between  the  two  materials  enabling  one  to  identify a f iber   and a 

binder is no  longer  possible.  Rigorous  bounds  can  also  be  obtained  for  this 

a rb i t ra ry   geometry   mater ia l   ( see   Ref .  14 and15) .   The  problem,  however ,  is 

that  the  distance  between  such  bounds is usual ly   qui te   large  and  the  value of 

the  upper  bound  for  application  to  the  case of r ig id   f ibers   in   re la t ive ly   l ess  



r igid  binder   mater ia ls  is questionable.   That is to   say ,  it appears   in tu-  

itively  that a continuous  binder  phase  will   result   in  modulus  values  closer 

to the lower  bound of the  %Lrbi t rary  phase  geometry  mater ia l .   Another  s e t  

of bounds  exis ts .   These  are   those of Ref. 6 for  the  special   material   also 

shown  in  Fig. 14. This  material   is   composed  by  taking  concentric  circular 

cylinders of f iber  and  binder  with  the  f iber  material   as  the  core  and  the 

volume  fractions of f iber   and  binder   in   this   typical   composi te   cyl inder   are  

equal  to  those of the  volume  fractions of the  two  materials  in  the  bulk < .u rn -  

posi te .   These  volume  f ract ions  are   maintained  in  a s e t  of cylinders 

having  var ious  diameters   which  are   used  to   completely  f i l l   out   the   ent i re  

volume  by  going  to  an  infinitesimally  srrlall  fiber  diameter.  The  bounds 

for  this  material   coincide  for  four of the  five  independent  elastic  constants. 

These   a r e   t he   so -ca l l ed   r andom  a r r ay   r e su l t s .   Fo r   t he   r ea l   ma te r i a l ,  

i t  is a lways  possible   to   surround  each  c i rcular   f iber   with a cylinder of 

binder  material   such  that   the  f iber  binder  composite  has  the  proper  volunle 

f ract ions.   However ,   the   outer   surface of the  binder  will  not  be a c i r cu la r  

cyl inder .   The  resul ts  of the  random  array  can  be  used 'as   an  approximation 

to   this   real   mater ia l  by assuming  that   the   s t ra in   energy  in   this   i r regular ly  

shaped  composite  cylinder  can  be  approximated  by  the  strain  energy  in a con- 

centr ic   c i rcular   cyl inder   having  the  same  areas  of f iber   and   b inder .   This   as -  

sumption  makes  the  random  array  results  directly  applicable  to  the  real   material  

behavior.  However,  there is s o m e  uncertainty  associated  with  thisassu-qticnand 
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al ternate   assumptions  have  been  proposed  in   the  form of interpolat ing  fac-  

tors  between  the  upper  and  lower  bounds of the   a rb i t ra ry   phase   geometry  

r e su l t s .  It should  be  noted  that  for  those  cases  where  the  bounds of the 

random  array  moduli   are   coincident ,   they  a lso  coincide  with  the  arbi t rary 

phase  geometry  bounds  when  the  binder  and  f iber  materials  are  al ternately 

used  as   the  core  of the  typical  composite  cylinder.  This  information  is 

of value  in   that   i t   es tabl ishes   for   those  cases   the  fact   that   the   arbi t rary 

phase  geometry  bounds  are  the  best   possible  bounds.  

Various  interpolation  schemes  have  been  proposed  to  yield a s e t  of 

values  for  elastic  constants  which  can  be  used  in  structural   analysis.   Tsai 

(Ref.  16 ) has  proposed  that a linear  interpolation  between  the  upper  and  lower 

bounds  is a proper  approach.  The  contiguity  factor  represents  the  inter-  

polation  between  the  bounds. W u  (Ref. 17)  has   proposed  an  interpolat ion 

factor   based on physical  reasoning  which  has  recently  been  shown  to  be 

equivalent  to a l inear  interpolation  factor  between  the  bounds.   Such  approaches 

assume  that  a single  interpolation  between  the  bounds  will  be  valid  for  all 

volume  fractions when  dealing  with a pair  of consti tuents  in a f ibrous   com-  

posite.   Further,   their   value is quite  l imited  unless  the  interpolation  factor 

is also  insensi t ive  to   the  ra t io  of the  elastic  constants of the  two  phases. 

Such  questions  can  only  be  answered  by  comparison  with  experimental   data.  

The  experimental   data   for   the  moduli   in   quest ion,   which  are   notably  those 

in   the  t ransverse  plane,   are   qui te   l imited.  

I -  . 
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An indication of the  relative  posit ion of the  various  bounding  curves 

discussed  above is provided  in  Fig.  15. The  transverse  bulk  modulus  is  

plotted  here as a function of the  binder  volume  fraction  for  consti tuents 

having a r a t io  of elastic  moduli  of 100. This   ra t io   i s   appropr ia te ,   fo r  

example ,   for   boron   re inforced   epoxy.   For   the   t ransverse   bu lk   modulus  

the   random  a r ray   resu l t s   co inc ide ,   and   as   po in ted   ou t   ear l ie r ,   th i s   resu l t  

is a lso  equal   to   the  lower  bound  for   the  arbi t rary  cyl indrical   phase  geometry.  

These   cu rves   a r e   a l so   shown  on  the  f igure,   and  note  that   at   reasonable 

volume  fractions  the  upper  and  lower  bourds  differ by  about  an  order of 

magnitude.  Also  shown  on  this  f igure  are  the  results  obtained  by  Paul 

(Ref.   18)  for  isotropic  composites of these   same  mater ia l s .   That  is, an  upper 

bound  equal  to  the  popular  "rule of mixtures"   and a lower  bound  which  is 

essentially  the  equivalent of the  two  materials  located  in a ser ies   path  in  

res is tance  to   the  load.   The  proximity of these  la t ter   two  curves   to   the 

a rb i t r a ry   phase   geomet ry   r e su l t s   emphas izes   t he   p rob lem of using  the 

a rb i t r a ry   phase   geomet ry   r e su l t s .  When these  bulk  modulus  results  are 

used  with  the  shear   modulus  resul ts   to   obtain  resul ts   for   the  t ransverse 

Young's  modulus,  distinct  bounds  occur  since  the  bounds  for  the  shear 

modulus  are  not  coincident.   This is shown  in   Fig.   I t )   where  the  t ransverse 

Young's  modulus  for  glass  reinforced  plastics is plot ted  as  a function of the 

binder  volume  fraction.  Again  the  random  array  upper  and  lower  bounds 

are   shown,   the  arbi t rary  cyl indrical   phase  geometr ies   upper   and  lower 

bounds  are  shown,  and  the  experimental   data  available  in  the  l i terature  (Ref.  
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16) are   plot ted.  An interpolation  curve  two-tenths of the  distance  between 

the  lower  and  upper   arbi t rary  phase  geometry  bounds is plotted.  This 

value is suggested  in  Ref. 16.  Note  that  both  the C = 0.2 and  the  random 

ar ray   upper   bound  a re  good approximations  to  the  experimental   data  over 

the  range  for  which  such  data  are  available.  No rational  choice  between 

these  two  curves   for   use as design  data  can  be  made  on  the  basis of this  

comparison.  However,  a different  result   occurs  when  experimental   data 

for   boron  re inforced  plast ics  (Ref. 1 9 )  are plotted as in  Fig.17.  Here  the 

grea te r   d i s tance   be tween  upper   and   lower   a rb i t ra ry   phase   geometry   bounds  

resu l t s   in  a grea te r   separa t ion  of the C = 0.2 curve  f rom  the  lower  bound.  

Here   i t  is seen  that  C = 0.2 is now a poor  approximation  to  the  experimental  

data  while  the  random  array  upper  bound  remains a good  result.  Although 

these  data  are too  limited to just i fy   the  conclusion  that   in terpolat ion  schemes 

a r e  not  useful,   they  do  seem to ind ica te   tha t   the   random  a r ray   resu l t  is at 

this   t ime a more  ra t ional   choice.  A comparison  between  these  random 

ar ray   resu l t s   and   the   few  ex is t ing   exac t   so lu t ions  is a l s o  of in te res t .  For 

this   purpose  we  can  compare  the  Hashin/Rosen  bounds  (Ref .  6 )  to   numerical  

solutions  for  hexagonal  arrays  obtained  in  Ref.10,  and  to  solutions  obtained 

f o r   r a n d o m   a r r a y s  of c i rcu lar   ho les   and   r ig id   f ibers   in   an   e las t ic   p la te  

(Ref. 2 0 ) .  

The  data  of Ref. 10 are in   t he   fo rm of a computed   mat r ix  of elastic con- 

s t an t s ,  g.. , in   the  form: 
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The  comparison of these  resul ts   wi th  those of Ref. 6 is best   accomplished 

by  transforming  the  former  according  to  the  following  relations: 

where  the  left-hand  side of the  above  equations is in  the  nomenclature of 

the  present   paper   and  the  r ight-hand  s ide is in  that of Ref.10.  Note  that 

where  different  numerical   results  were  obtained  for  symmetric  terms of 

the  e las t ic   constant   matr ix ,   they  were  averaged.   The  comparison  between 

the  resul ts  of Refs.10  and 6 appears   in   Table  5. 

The  resul ts  of Ref. 2 0  which  lend  themselves   to   comparison  are   those 

for  the  plane stress bulk  modulus, K123. These  can  be  obtained  from  Ref.  

20  by  reading  values  for  Young's  modulus  and  Poisson's  ratio  from  curves 



presented  in  that   paper  (with  l imited  accuracy  because of the   smal l   s ize  

of the  graphs)  and  computing. 

The  result ing  values  are  plotted  in  Fig.  18. 

Because of the  greater  f lexibil i ty  and  simplicity of the  s t ra in   energy 

r e su l t s  of Ref. 6 , the   curves   in  Fig.  18 and  the  data of Table 5 can   be   in te r -  

preted  as   support ing  the  use of the  Hashin/Rosen  Bounds  for  computation of 

I the  effects of var ia t ion  in   any of the  const i tuent   propert ies .   The  numerical  

methods (i. e.  Ref.1 O and11) a re   a l so   l imi t ed   t o   ve ry   spec i f i c   r egu la r   a r r ays  

in  the  sense  that  the  existant  complexity  would  be  greatly  multiplied if it 

were   necessa ry   t o   u se  a typical  element  involving  more  than  one  f iber as 

the   basis   for   the  numerical   analysis .  In conclusion, it appears   that   the  

methods of Ref. 6 are   the   mos t   su i tab le   resu l t s   p resent ly   ava i lab le   for  

use  to  obtain  average  elastic  response of fibrous  composites.   Util ization 

of these   resu l t s   in   l amina te   and   s t ruc tura l   ana lys i s   has   been   d i scussed  



elsewhere.  It  should  be  emphasized  that  the  discussion  heretofore  has 

related  to  the  elastic  constants of a matrix  stiffened  by a uniaxial   se t  of 

f ibers.   The  application of these  results  to  the  study of a matrix  st iffened 

by a three-d imens iona l   a r ray  of f ibe r s  is discussed  e lsewhere.  

In  addition.to  the  references  described  above,  one  should  also  consult 

the  comprehensive  cri t ical   bibliography of the  mechanics of heterogeneous 

materials  contained  in  Ref. 21. 

Internal   Stresses  

The  evaluation of the  details  of the  stress  distribution  in a fibrous  compo- 

s i te   can  be  important   for   the  s tudy of fa i lure   mechanisms.   Overal l   inelast ic  

response  or  failure  may  be  studied  without  knowledge of t he   l oca l   s t r e s ses  , 

by  the  use of l imit   analysis   theorems , for  example.   However,   models 

such as that of the  statist ical   tensile  failure  study  (Ref.  1 ) do serve   to  

emphasize  the  usefulness of a knowledge of the  s t ress   dis t r ibut ion,   par t icu-  

larly  in  the  vicinity of in i t ia l   smal l   in te rna l   f rac tures .   This   a t tempt   to   re la te  

fa i lure   p rocesses   to   cons t i tuent   charac te r i s t ics  is based on  the  hypothesis 

that  given a complete set of consti tutive  relations  for a uniaxial  fibrous 

composite,   i t   will   be  possible  to  determine  the  behavior of a laminate  of 

l aye r s  of uniaxial   composites  and  thereby  to  have  relations  defining  mater- 

ial behavior  which are su i tab le   for   comple te   s t ruc tura l   ana lys i s .  In this 



sect ion we will  be  concerned  with  studies of the   in te rna l   s t ress   d i s t r ibu t ion  

of the  heterogenous  mater ia l   represented  by a fibrous  composite.   The  appli-  

cation of these  studies  to  the  definit ion  oifailure  mechanisms  and  the  estab- 

l ishment  of ra t iona l   fa i lure   c r i te r ia  wil l  be   t reated  in   the  subsequent   sect ion.  

Here ,  as in  the  case of the  e las t ic   constants  a complete  solution of 

the  s t ress .   problem  is  a complex  undertaking;  hence,   the  l i terature  consists 

of  a l imited  number of exact  and  approximate  solutions  based on idealized 

const i tuent   geometry.   Numerical   methods  for   determining  the  e las t ic   s t ress  

distribution  when  the  f iber  array is a regular   one  have  been  discussed  in   the  pre-  

vious  section.  Further  work  is   required  to  obtain  the  influence of non-uniform 

fiber  spacing  apon  the  stress  distribution.  These  results  would  be of pr in-  

cipal  value  for  consideration of the  failure  mechanisms  associated  with  loads 

applied in  a plane  t ransverse  to   the  f iber   axes .   For   loads  appl ied  paral le l   to  

the  fiber  axes,  the  initial  internal  failure is general ly   considered  to   resul t  

f rom a  flaw or   imperfect ion in   the  f ibers .   Thus,   the   s t ress   analysis  of i n t e r -  

es t   for   the   d i scuss ion  of fa i lure   mechanisms  for   loads  in   the  f iber   direct ion 

is  the  one  associated  with  the  perturbed  stress  f ield  in  the  vicinity of a f iber .  

The  stresses  in  the  vicinity of such a discontinuity  do  not  lend  themselves 

readily  to  analysis.   This  has  resulted  in a var ie ty  of approximate   t rea t -  

ments   most  of which  assume  that   radial   symmetry  exis ts .   The  work of 

Dow (Ref. 2 2  ) appears  to be  the  initial  treatment of this  problem.  His 

analysis   ut i l izes   the  shear   lag  approximation  that   extensional   s t resses   in  

the  binder  are  negligible  with  respect  to  those  in  the  f iber  and  that   the  shear 
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s t r a ins   i n   t he   f i be r   a r e   sma l l   compared   t o   t hose   i n   t he   ma t r ix .   Th i s   ana lys i s  

has   s ince  been  repeated  in   other   s tudies   and  has   a lso  been  ut i l ized as the 

basis   for  a three-concentric  cylinder  model  (Ref.  2 ) where  the  third 

cy l inder   a t tempts   to   represent   an   average   e f fec t  of the  surrounding  mater ia l .  

These  models   general ly   re ta in   some  real ism  with  regard  to   the-const i tuent  

geometry  but  involve  gross  approximations of the   s t ress   f ie ld .  An al ternate  

approach  utilized  by  Sadowski  (Ref. 2 3 )  considers   an  exact   plast ic i ty   analysis  

for   f iber   geometr ies   which  approximate  the  t rue  configurat ion.   Thus,   f ibers  

> 

having  ends of an  ellipsoidal  shape  which  are  perfectly  bonded  to  the  surround- 

ing  matrix  material   have  been  studied.  The  results of these  s tudies ,   however ,  

indicate  that a la rge   por t ion  of the  load  carr ied  in   the  f iber  is t ransmi t ted  

to   the  matr ix   by  s t ress   components   normal   to   the  interface  and  local ized 

at  the  end of the   f iber .   These   resu l t s   a re   thus   perhaps   mos t   appropr ia te   for  

discont inuous  f ibers   pr ior   to   an  interface  fa i lure .   The  inf luence of interface 

s h e a r   s t r e s s e s   a p p e a r s   t o  be  better  represented  in  the  shear  lag  type  models.  

Sadowsky  has   a lso  presented a two-dimensional  analysis f0.r r igid  f ibers  

with  alternate  f ibers  discontinuous  (Ref.  24) .  A two-dimensional  model 

has  also  been  utilized  by  Hedgepeth  (Ref. 25)  for  extensional  f ibers 

using  the  shear   lag  analysis   assumptions  to   approximate  the  s t ress   f ie ld  

in  the matrix. In a general   way,  all of the  studies  described  above  support  

the  conclusion  that  the  load is t ransfer red   a round a discontinuity  in a f iber ,  

in a very   shor t   d i s tance   by   re la t ive ly   h igh   s t resses .   However ,   the   de ta i l s  

of the  load  t ransmission,   which is the  important  consideration  in a failure 
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mechanism  analysis,   can  be  quite  different,  as will  be  shown  by a compar i -  

son of the  resul ts  of Refs. 2 and 2 2 .  

The  interface  shear   s t ress   is   g iven  in   Ref .  2 (with  some  changes  in 

notat ion)   as  : 

6 
'/r @/a-. '/a 

= 
2 1 -Vf Ir. ) E o s h  ,6,x - s inh  ?,x] 

Vf , 

where 

Gb = Shear  modulus of b inder   (mat r ix)  

Ef = Young's  modulus of f iber  

vf = Fiber  volume  fraction 

x = Distance  from  fiber  end 

rf = Fiber   rad ius  

6 = Extensional  stress  in  the  f iber  at  a l a rge   d i s t ance   f rom 
*O  

the  fiber  end 

= In te r face   shear   s t ress  

The   in te r face   shear   s t ress  is given  in  Ref. 22  (again  with  Some  changes 

of nomencla ture) ,   as  : 

where P = the  effective  load  differential  between  filament  and  binder 

A = F i l a m e n t   a r e a  E = Young's  modulus of binder  
b 

2 f  = Fiber   length a = Coordinate   f rom  f iber   midpoint  
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For a comparison  between  this  solution  and  that  of Ref. 2, t h e   s t r e s s  

d i s t r ibu t ion   a t  a la rge   d i s tance   f rom  the   f i l ament   end   should  be the  same.  

Thus : 

And,   fo r   l ong   f i be r s  

where ,  x , is given  in  Ref. 22 by: 

This  value is based  on an   a s sumed   d i s t r ibu t ion  of s h e a r   s t r a i n   a c r o s s  

the  binder   mater ia l .   For  a constant   shear   s t ra in   the  above  expression 

would  be  altered  to  yield:  

x =  
The  resul ts  of Ref. 25  can  be  uti l ized  to  yield 

I' 
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The  maximum  shear   s t resses  as found f rom  the   th ree   re fe rences  

can  then  be  compared.  The  values of A given  by  Equations  (17)and  (18) 

a r e  found  to  be  essentially  identical   for  the  cases  considered  and  therefore 

only  one  result of Ref. 2 2  will  be  plotted.  Fig.  19shows  the  variation of 

the   normal ized   maximum  shear   s t ress   wi th   f iber   vo lume  f rac t ion   for   e las t ic  

constants   appropriate   to   glass   re inforced  plast ic .   The  resul ts   for   the  two- 

dimensional  model of Ref. 2 5  (Equation  19)  and  the  three-dimensional  model 

of Ref. 2 are   near ly   ident ical   and,   a l though  s imilar   in   shape,   substant ia l ly  

smaller  in  magnitude  than  those of Ref. 2 2 .  In F ig .  20 the  effect of constituent 

moduli   ra t io   a t  a f ixed  f iber  volume  fraction is presented.   Here  the  resul ts  

of Ref. 2 2  differ  in  form  as  well  a s  in  magnitude  from  those of Refs.  2 and 

25 . It appears  that  a well  conceived  set of experiments  would  be a des i rab le  

contribution. 

Failure  Mechanics 

The  efforts  to  analyze  the  failure  mechanisms  in  composites  have  met  with 

most   success   in   the  problems of load  appl ied  paral le l   to   the  f ibers  of a compo- 

si te  containing a uniaxial  fiber  set.  It is on  this  subject  that  attention wil l  be 

focussed  in   the  present   review,   t reat ing  both  tensi le   and  compressive  loads.  

Tension - The  resul ts  of some of those  studies  which  need  not  be  con- 

sidered  here  can  be  found  in  Ref.   26.   One of the  ear ly   models   which  s t i l l  

retains  popular  appeal is that of Ref. 27. That  model is based  on  the  assumption 
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that   constant  strain  exists  throughout  the  composites  and  that   fracture 

occur s   a t   t he   f a i lu re   s t r a in  of the  f ibers  alone.   Although  this  model  offers 

many  conveniences,   for   example,   i t   permits   the  use of the  “rule  of mix tu res f r  

a s   an   e s t ima te  of composi te   s t rength,  it must   in   general   be   discarded  for   the 

following  reason  alone:  The  high  strength  and  st iffness  f i laments  which  make 

the  potential   for  composites  seem  high  generally  have  brit t le  failure  characteris - 

tics,  which a re   subjec t   to   the   s ta t i s t ica l   d i s t r ibu t ion  of f laws  and  imperfect ions 

inherent   in   br i t t le   mater ia ls .   Some  way of coupling  the  statist ical   nature of 

the  s t rength of a fi lament  to  that  of the  composi te  is essent ia l .   Such  an  approach 

was  suggested  by  Parratt   (Ref.  28)  who proposed  that   composite  failure 

occurs  when  the  accumulation of f ibe r   f r ac tu re s   r e su l t i ng   f rom  inc reas ing  

load  shortens  the  f iber   lengths   to   the  point   that   fur ther   increases  in load 

could  not  be  transmitted  to  the  f ibers  because  the  maximum  matrix  shear 

stress  was  exceeded.  Thus  the  f iber  fractures  were  eventually  followed  by 

a shear   fa i lure  of the  matr ix ,   producing  composi te   fa i lure .  

It seems  reasonable   to   t rea t  a model  which  contains a s e t  of paral le l  

f ibers   which   a re   s t rong   and  stiff with  respect   to   the  matr ix   mater ia l   in   which 

they   a re   imbedded.   The   f ibers   a re   b r i t t l e   and   the i r   s t rength   var ies   subs tan t ia l ly  

from  point  to  point  along  their  length.  When  such a composite is subjected 

to a tensi le   load a f ibe r   f r ac tu re  wi l l  occur   a t  one of the   se r ious   f laws   or  

imperfect ions.  When such a f iber   breaks,   the   s t ress   in   the  vicini ty  of the 

broken  f iber is per turbed  substant ia l ly  so  tha t   the   ax ia l   s t ress   in   the   f iber  



vanishes   a t   the   f iber   break  and  gradual ly   bui lds   back  up  to  its undisturbed 

s t ress   va lue   due   to   shear   s t resses   be ing   t ransfer red   across   the   f iber   mat r ix  

interface.   The  general   form of the  f iber stress is disturbed  for  only a 

short   d imension.  When such a break   occurs ,   severa l   poss ib i l i t i es   for   the  

future  behavior of the  composi te   exis t .   Firs t ,   the   high  interface  shear  

s t resses   could  produce  interface  fa i lure   which  could  propagate   a long  the 

length of the  f iber  reducing  the  f iber  effectiveness  over a substantial   f iber 

length. In order  to  achicvc  the  potential  of the  f iber  strength it is n e c e s s a r y  

to  study  and  determine  the  fabrication  conditions  which  will   yield  an  inter-  

face  sufficiently  strong  to  prevent  this  interface  shear  failure.   This  can 

be  done  either  through  the  use of a high  strength bond o r  a duct i le   matr ix  

which  permits   redis t r ibut ion of the   shear   s t resses .   In   the   l a t te r   case   the  

length of fiber  which is affected  by  the  break wil l  i n c r e a s e   a s   i t  wi l l  take a 

longer   d i s tance   to   re t ransmi t   the   s t resses   back   in to   the   f iber  at  the  low  s t ress  

level of a ducti le  matrix.  With a strong  bond,  the  interface  conditions  can 

be   overcome  as  a potential   source of fa i lure .   The  f racture   toughness  of 

the  matr ix   must   a lso  be  considered  to   prevent   the  propagat ion of a c r a c k  

through  the  matrix  and  parallel   to  the  f i laments.  A second  possibil i ty is 

that   the   ini t ia l   crack  wil l   propagate   across   the  composi te   resul t ing  in   fa i lure .  

This is influenced  by  the  fracture  toughness of the   mat r ix   and   aga in ,   s ince  

i t  is c lear   tha t   wi th   b r i t t l e   f ibers   one   can   a lways   expec t  a f r ac tu re   t o   occu r  

at  a relatively  low stress level ,  it is important   that   the   f racture   toughness  

of the  matr ix   mater ia l   be   suff ic ient   to   prevent   the  propagat ion of th i s   c r ack  

across   the   composi te .  If these  two  potential   modes of fa i lure  are  a r r e s t e d ,  
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i t   will   then  be  possible  to  continue  to  increase  the  applied  tensile  load  and 

to   obtain  breaks  a t   o ther   points  of imperfection  along  the  f ibers.   Increasing 

the  load  will  produce a s ta t is t ical   accumulat ion of f iber   f ractures   unt i l  a 

sufficient  number of ineffective  f iber  lengths  in  the  vicinity of one  cross-  

sect ion  interact   to   provide a weak  surface.  At  the  point of incipient   f racture  

a l l  of the  fa i lure   modes  descr ibed  may  very  wel l   in teract   to   produce  the  f inal  

f rac ture .   The   des i rab le   approach   might   wel l   be   to   es tab l i sh  a s ta t is t ical  

tensi le   fa i lure   model  ( a s  in  Ref.  29)  and  to  incorporate  the  possibility of c r a c k  

propagation  failure  modes,  as  defined  in  Ref.  30 - 32, pr ior   to   the  s ta t is t ical  

f rac ture .  

This   s ta t i s t ica l   model  of fa i lure   has   been   d i scussed   in   some  de ta i l  i n  

Ref.  29. The  model  which  was  used  to  evaluate  the  influence of consti tuent 

properties  upon  the  tensile  strength  considers  that   in  the  vicinity of a n  indi- 

vidual   break a portion of each  f iber  m a y  be  considered  ineffective,  a s  d iscus-  

sed  previously.   The  composite may then  be  considered  to  be  composed of 

l aye r s  of dimension  equal  to the  ineffective  length.   Any  fiber  which  fractures 

within  this   layer   wil l   be   unable   to   t ransmit  a load  across   the  layer .   The  appl ied 

load at that   cross-section  would  then  be  uniformly  distributed  among  the  un- 

broken  f ibers   in   each layer. The  effective  stress  concentrations  which  would 

introduce a non-uniform  redis t r ibut ion of these  loads is not  considered  initially. 

A segment  of a fiber  within  one of t hese   l aye r s  m a y  be  considered as  a link 

in the  chain  which  constitutes  an  individual  fiber.  Each  layer of the  composite 
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is then a bundle of such  l inks  and  the  composite  i tself  a s e r i e s  of such  

bundles .   Treatment  of a f i b e r   a s  a chain of links is appropriate  to  the  hypo- 

thes i s   tha t   f rac ture  is due  to  local  imperfections.   The  l inks  may  be  considered 

to  have a s ta t is t ical   s t rength  dis t r ibut ion  which is equivalent  to  the  statist ical  

f law  dis t r ibut ion  a long  the  f ibers .   The  real ism of such a model is demon- 

strated  by  the  length  dependence of f iber   s t rength.   That  is, longer   chains  

have a high  probability of having a weaker   l ink  than  shorter   chains ,   and  this  

is   supported by experimental   data  for  bri t t le  f ibers  which  demonstrate  that  

mean  f iber   s t rength  is  a monotonically  decreasing  function of fiber  length.  

For   th i s   model   i t   i s   f i r s t   necessary   to   def ine  a l ink  dimension  by  consideration 

of the  perturbed  stress  f ield  in  the  vicinity of a broken  f iber.   I t  is then  neces-  

s a r y  to  define  the  statist ical   strength  distribution of the  individual  links  which 

can  be  obtained  indirectly  from  the  experimental   data  for  the  f iber-strength- 

length  re la t ionship.   These  resul ts   can  then  be  used  in   the statistical study 

of a s e r i e s  of bundles  and  uti l ized  to  define  the  distribution  for  the  strength 

of the  fibrous  composite. 

For   f ibers   which  can  be  character ized  by a Weibull  distribution of the 

s t rength  of a s e r i e s  of individual  f ibers of a specified  gage  length  tested  to 

fa i lure ,   i t  is possible to represent   the   f iber   re inforced   composi te   s t rength  

with a closed  form  solution. In par t icular ,   the   s ta t is t ical   mode of the com- 

posi te   tensi le   s t rength,  6 , is found  to  be: t 
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where vf 

,k 
e 

s 

The  fiber  volume  fraction 

The  two  parameters  in  the  Weibull   frequency  distribution, 

g(( t ) ,   for   s t rength of individual  filaments. 

The  base of na tura l   logar i thms.  

A character is t ic   length  for   the  per turbat ion of t he   s t r e s s  

field  produced  by a fiber  break  ( the  "ineffective  length").  

This is based  on  individual  f i laments  characterized  statist ically  by  the  frequency 

distribution  function  given  by: 

where L gage  length  for  individual  fiber  tests. 

6 s t r e s s   a t   f i b e r   f r a c t u r e  

Cer ta in   resu l t s  of th i s   ana lys i s   a re   p resented   in  F i g .  2 1  ( reproduced 

from  Ref .   1 ,   wi th   typographical   errors   corrected) .   Here  the  coml) . ,s i te  

s t rength,   normalized  with  respect   to   the  mean  s t rength,  CL , of individual 

f i be r s  of length, L ,  is plotted as a function of the  coefficient of var ia t ion,  

f , of individual   f iber   s t rength  values .   The  var ia t ion,  f , is the  s tandard 

deviation  divided  by  the  mean  f iber  strength.   Curves  are  shown  for  various 

values of the  ratio of fiber  test   length  to  I l ineffective  length".  It is seen  

that   for   reference  f ibers  of length  equal  to  the  ' ' ineffective  length",  that 

is for  the  basic  bundle of f iber   l inks of the  model   descr ibed  previously,  

the  statist ical   mode of the  composi te   s t rength is lower  than  the  mean  f iber  

- 
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s t rength  by an  amount   which  increases  as the  coefficient of var ia t ion of 

the  s t rength of the   ind iv idua l   f ibers   increases .   For   more   p rac t ica l   l ength  

r a t i o s ,  L / d ,  ( that   i s ,   for   s ingle   f ibers   tes ted  a t   gage  lengths   large  compared 

to  the  "ineffective  length")  the  analysis  indicates  that  composite  strength 

is larger   than  the  mean  f iber   s t rength.  In order   to   expla in   these   resu l t s ,  

consider  the  size  effect  on composite  and  on  f iber  individually.   The  prac- 

t ical   composite  specimen is la rge   as   compared   wi th   the   f iber   l ink .   That  

i s  a composi te   cross-sect ion  contains   many  f ibers   and  the  composi te   length 

is   many  t imes  the  ineffect ive  length.   For   this   composi te ,   the   s t rength is 

insensit ive  to  changes  in  composite  dimension.  Thus  the  composite  strength 

defined by equation 2 0  is val id   for   pract ical   composi tes   regardless  of s ize .  

However,  a n  individual  fiber  has a strength  which is a strong  function 

of length.   There  is   an  increasing  l ikel ihood of encounter ing  ser ious  f laws 

as   f iber   l ength   increases   and   hence   mean  f iber   s t rength   decays   monotonica l ly  

with  increasing  f iber  test   length.  A very  long  f iber   can  have a low  strength,  

but  when  this  fiber is incorporated  into a composi te   the  f iber   break  which 

occurs  at a low  s t ress   level   wil l   have a relatively  unimportant effect on 

composi te   s t rength.  Thus the   ra t io  of composi te   s t rength  to   mean  f iber  

s t rength  is strongly  dependent  upon  the  length of the  individual  f iber  specimens.  

Note  that   the   normalized  s t rength  ra t io  is close  to  unity  for  coefficients 

of var ia t ion as l a r g e  as 15%. However,   the fact that  the  magnitudes of c o m -  

posi te   s t rength  and  mean fiber St reng th   a r e   c lo se   t o  one another  3hould  not 
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be  taken  to  justify  the  hypothesis  that   composite  performance is s o m e  

fract ion of f iber   performance.   The  f requent ly   quoted  "s t rength  conversion ' '  

resul ts   becloud  the  importance of f iber   coeff ic ient  of var ia t ion  and  f iber  

tes t   length.  

Another  way of viewing  the  significance of the  resul t  of the  s ta t is t ical  

tensi le   fa i lure   model   ar ises   f rom  the  fact   that   the   s ta t is t ical   mode of the 

composite  strength is equal  to  the  mode of a bundle of fi laments  whose 

length is equal  to  the  characterist ic  or  ! ' ineffective  length".   Thus,   the 

difference  between  the  strengths of a composite  and a  bundle of f i laments   is  

equal  to  the  difference  between  the  strength of a bundle of fibers  whose 

length is equal  to  the  composite  length  and  that of a  bundle of f ibers   whose 

length is equal  to  the  "ineffective"  length.  Since  the  latter is on  the  order 

of 10 f iber   d iameters   and   the   former   many  mul t ip les  of the   l a t te r ,   th i s  is 

a large  effect .  A plot of bundle  strength,  g"' , normalized  with  respect   to   com- 
4, 

b 

posi te   s t rength,  (T , (the  statist ical   modes of both) is presented  in F i g .  2 2  

as a function of the  ratio of composite  length,  L , to  "ineffectiver1  length, 

t 

, for  a given  value of the  coefficient of var ia t ion,  r The merits 
of the  cornposi t ing  process   are   apparent   herein.  

With  this  information  it is possible now to   t rea t ,  as a final  evaluation, 

the  composi te   tensi le   s t rength on a weight  basis as a function of the  const i -  

tuent   charac te r i s t ics .   The   s t rength   to   dens i ty   ra t io  of a f ibrous  compo- 

s i te ,   normalized  with  respect   to   the  s t rength  to   densi ty   ra t io   of . the 
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individual  f ibers  tested,   can  be  expressed as a function, , of the   f iber  

volume  f ract ion,   vf ,   the   f iber   to   binder   modulus  ra t io ,   Ef /Gb,   the  f iber   to  

binder  density  ratio,  r f /  cb,   the   s ing le   f iber   t es t   gage   l ength   to   d iameter  

ra t io ,   L/df ,   and  the  f iber   s t rength  coeff ic ient  of var ia t ion,  /a . I t   has   p re-  

viously  been  shown,  that  for  this  model,  the  effect of f iber  volume  fraction 

is very  near ly  a linear  one.  The  effects of the   o ther   var iab les   a re   p resented  

in  parametric  form  in  Fig.23.  Here,   the  normalized  strength-density  ratio,  

, is plotted  as a function of fiber  coefficient of var ia t ion,  r' ' The 

product of the  ra t io ,  )G , and  the  mean  single  f iber  strength  to  density 

ratio  defines  composite  strength-density.   Hence,  the  ratio  will   be  larger 

than  unity  when  the  compositing  process  results  in a mater ia l   which is f o r -  

giving of scat tered  low  s t rength  f iber   e lements ,   and  i t   wi l l   be   less   than  uni ty  

when  even  short   gage  length  single  f ibers  show a la rge   s t rength   d i spers ion .  

These  effects   are   i l lustrated  in   Fig.23  where  i t  is shown  that  the  larger  the 

gage  length on which a given  f iber  strength  level is achieved  the  higher  the 

composite  strength wi l l  be.  Also  indicated is the  fact   that   even  for   moderate  

d ispers ions  of f iber   s t rength,   the   composi te   can  achieve a la rge   f rac t ion  of 

the  strength  associated  with  very  short   length  f i laments.   The  effect  of const i t -  

uent  moduli is also  shown  and  the  beneficial   effect  of increased   mat r ix   modulus  

is indicated. 

This   format   p rovides   mater ia l s   des ign   c r i te r ia   for   th i s   mode  of tensi le  

fa i lure .   For   low  f iber   s t rength   d i spers ions  it is seen   tha t   the   curves  are nea r ly  

horizontal   and  crack  propagat ion  effect  is the   more   l ike ly   occur rence .  
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It is of interest   to   note   that   the   s ta t is t ical   tensi le   fa i lure   model   can 

be  used  to   provide  insight   into  the  s t ress   concentrat ion  effect .   That   is ,   i t  

is possible   to   account   for  a non-uniform  redis t r ibut ion of the  load  which  hxl 

been  carr ied  in  a  now broken   f i l ament .   For   example ,  a computation  has 

been  performed  for  a s imple  t r iangular   dis t r ibut ion  funct ion  for   the  l inks of 

the  statistical  model.  This  function is shown  in  the  upper  portion of Fig.  11. 

The  model  assumed  that   for  every  broken  f iber  there  were two adjacent 

f ibers   which   car r ied  a load  equal  to a mult iple ,   k ,   the   s t ress   concentrat ion 

f ac to r ,  of the  load  carried  in  the  other  f ibers.   The  model was  a g ross  

s implif icat ion of the  real   mater ia l ,   but   i t   was  intended  to   qual i ta t ively 

indicate a phenomenon.  The  maximum  load  in a bundle of links  having  the 

given  frequency  distribution  function is defined  by  the  average  stress  at   fail-  

u r e ,  6 . Fig.  2 4  presents  a plot of ?/b, as a function of the   s t ress   con-  

cen t r a t ion   f ac to r ,   k ,   f o r  two  ratios of b l a ,   w h e r e  a and b are   the  l imit ing 

s t r e s s e s  of the  t r iangular   dis t r ibut ion  funct ion,  $(C) . Also  shown  are  the 

f rac t ion  of f ibers   which  are   broken  a t   incipient   bundle   fa i lure .   Thus  i t  

is seen   tha t   for   h igh   s t ress   concent ra t ion   fac tors   the   bundle   s t rength   decreases  

as expected. In this  case,   the  minimum  bundle  strength,   for  large k is of 

cour se  d = a. More  important  is the  sharp  decrease  in   the  f ract ion of 

broken   f ibers   a t   inc ip ien t   fa i lure  as k increases .   I t  is this  effect  which 

c lear ly   s igna ls   the   change   f rom a s ta t i s t ica l   f rac ture   accumula t ion   fa i lure  

- 

- 

mode  to a crack  propagat ion  mode.  In the  lat ter  i t   would  be  expected  that  

the  fracture  toughness  studies  would  be of pr incipal   importance.  
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Compress ion  - The  existing  studies of compressive  s t rength  (Ref .33 

and 3 4 )  are   based  on  the  hypothesis   advanced  by Dow (Ref.  35)  that  the  mode 

of fa i lure   for  a f ibrous  composi te   subjected  to   compression  paral le l   to   the 

f i laments  is a small   wavelength  f iber  instabil i ty.   This  mechanism is analo- 

gous  to  the  buckling of a column on an  elastic  foundation. A s  presented  in  

the  previous  annual  report  (Ref. I )  a s imple  s t ra in   energy  evaluat ion of two 

possible  buckling  patterns  yields  the  following  results: 

F o r  the  "extension"  mode: 

For   the  "shear"   mode:  

A more  exact  approach  to  this  would  be  to  consider  the  model  composite 

of elastic  layers  and  use  the  methods of Ref .   36.   For   this   case  the  resul ts  

obtained  are  

cr 
c 

L 
f -v* I 

where n = - GI 
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It   can  be  seen  that   for  f ibers  having a modulus khat i s   l a rge   compared  

to  that of the  binder:   n+o.   For   this   case,   Equat ion (24) reduces  to  

Equation (2 3 ) .  

The  studies of composi te   s t ructural   eff ic iency  descr ibed  e lsewhere  in  

this   report   conclude  that   minimum-weight   s t ructures   demand  opt imum  s t i f fening 

eff ic iencies ,   s t resses   beyond  the  e las t ic   range  and  consequent   analysis  of a l l  

possible  failure  modes--with  attendant  improvement of the   c r i te r ia   for   fa i lure .  

A rational  extension of the  above  compression  model is thus  the  inelastic  case.  

This  can  be  obtained  by  considering  the  matrix  to  have a cha rac t e r i s t i c   o r  

maximum  s t ress   level   as   wel l   as   an  ini t ia l   e las t ic   modulus.   For   an  e las t ic  perfectly 

plast ic   matr ix ,   the   character is t ic   s t ress   level   would  be  the  yield  s t ress .  

With  the  use of a secant  modulus as the  measure of effective  material   st iffness,  

the  elastic  result   can  be  extended  to  give a composi te   compress ive   s t rength  

for   ine las t ic   mat r ices .   This   resu l t ,   fo r   the   genera l ly   dominant   "shear"  

mode of compressive  micro- instabi l i ty  is given  by: 

where:  
ec = Composi te   compressive  s t rength 

Ef = F i b e r  Young's  modulus 

% = Binder  shear  modulus 

6 = Binder   cha rac t e r i s t i c   s t r e s s   l eve l  Y 

vb = Binder  volume  fraction 
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vf = Fiber   volume  f ract ion 

Typica l   resu l t s   a re   p lo t ted   in   F ig .   25 ,   which   shows  the   compress ive  

strength  predictions  for  the  elastic  case as a function of the  binder  modulus.  

The  inelastic  cutoff  curves  depend  on  both  the  f iber  modulus  and  binder 

"strength.  Computations  for  glass  and  boron  filaments  in  two  different 

b inders   a re   shown.  It can  be  seen  that   the   re la t ive  importance of changes 

in  binder  modulus,   binder  "strengthll ,   and  f iber  modulus  are  greatly  dependent 

'upon  the  ini t ia l   or   reference  condi t ion.   For   example,  a composite  containing 

glass  f i laments  in a matrix  having a modulus of 0.25 x 10  ps i   and  a "yield11 

s t r e s s  of 15 ksi   can  be  improved  ( in   the  sense of h ighe r   compress ives t r eng th )  

by improving  the  strength of the  binder,   but is unaffected  by  an  increase  in  

binder  modulus  and  essentially  unaltered  by a change  in  fiber  modulus. 

However,   composites of boron  f ibers   in   the  same  matr ix   could  be  improved 

substantially by improvements  in binder  modulus  but  would  be  unaffected 

by a change  in  binder  strength  or  f iber  modulus.   This  quantitative  measure 

of the  influence of consti tuent  properties  upon  composite  performance  can 

be  used  in   an  eff ic iency  analysis   as   being  representat ive of the  potential 

compress ive   s t rength  of uniaxial   composites.  

3 

Some   measu re  of experimental   qualification of this   analysis   has   been 

obtained by a study of single  f i laments  in a mat r ix   subjec ted   to   compress ive  

loads.  In the  previous  study  (Ref. 1 ) photoe las t ic   s t ress   pa t te rns   were  

shown  for  individual  glass  f i laments  embedded  in  epoxy  matrix  after a high 
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t empera tu re  (250° F) cure.   The  resul t ing  f iber   instabi l i ty   was  exact ly  

the  type  assumed  in   the  present   analysis .   This   instabi l i ty   has   been  observed 

previously  by  other  investigators  (e.g. ,   Ref.  37) but   there   has   been  some 

question as to  whether a loading  strain  applied  subsequent  to a room  t empera -  

t u r e   c u r e  would  produce  the  same  effect   as  the  thermally  induced  strain.  

In the   p resent   p rogram a s e r i e s  of single  f i laments  were  imbedded  in a 

room  temperature   cur ing  s i l icone  rubber  (CE RTV 615) and  subsequently 

loaded.   The  resul ts   are   shown  in   Fig.  26  for  glass,   tungsten  and  boron 

f i laments .   The  wave  lengths   have  been  measured  and  they  can  be  correlated 

with  the  simple  beam  on  an  elastic  foundation  results of Ref .  38. From 

those  results  i t   can  be  shown  that  the  wave  length,  x , is given by 

where  

f iber   d iameter  

E fiber  modulus 

"foundation"  modulus. 

The  Itfoundation''  modulus is unknown  (not  to  be  confused  with  the 

Young's  modulus of the matrix, which  in  this  case is 70 psi)   but it can 

safely  be  assumed  to   be  the  same  for  all three  f ibers.   Thus  one  would 

predict  that  the  buckling  wave  length  would  be  proportional  to  diameter  and 

the  fourth  root of fiber  modulus. In the  previous  study of buckling  due  to 



thermally  induced  s t ra ins   (Ref .  l ) ,  a set of glass   f i laments  of different 

diameters   was  t reated  and  i t   was  shown  that ,   in   accordance  with  Equat ion 

25,  the  buckling  wave  length  varied  l inearly  with  f iber  diameter.   Here 

the  resul ts   have  been  normalized  with  respect   to   the  tungsten  f i lament  

wave  length so  that: 

where   subscr ip t  W denotes  Tungsten 

The  resul ts  for the  specimens of Fig.  26 a r e   a s   f o l l o w s :  

Table A - RTV - 615  Matrix  Composites 

F i b e r  
Mater ia l  

Tungsten 

Glass  

Boron 

F i b e r  F i b e r  
Modulus, E Diameter ,  d 

50 x 10 p s i  0.0020" 

10.5 x 10 0.0038" 

6 

6 

5 7 . 5  x 10 0. 005 1 I (  
6 

F i b e r  
Wavelength,A 

0. 195" 

0.230 

0.460 

X) 
thea 

1.00 

1.29 

2.64 

1.00 

1.18 

2 . 3 6  

Further   confirmation  was  a t tempted  with  the  use of a different   matr ix .  

GE RTV-602  was  selected  for its nominally  higher  Young's  modulus.  The 

tes t ,   however ,   y ie lded a modulus of only  110  psi   and  the  correlat ion of these 

r e s u l t s  is inexplicably  poor,  as  shown  below. 
- 



Table B - RTV - 662 Matrix  Composites 

F i b e r  
Modulus, E Mater ia l  

F i b e r  

Tungsten 

57.5 x 10 p s i  Boron 

10.'5 x 10 p s i  Glass 

50 x 10   ps i  6 

6 

6 

- "- 
I 

F i b e r   F i b e r  
Diameter,  d Wavelength, A 

0.0020'~  0.260 

0.  0038" 0.195 

0.  0048"  0.430 

1.00 1.00 

1.29 0.75 

2.49 1.65 

Fur ther   s tudy  is required  in   this   experimental   area.   Indeed  no  report  

on  the  status of micromechanics  of fibrous  composites  would  be  complete 

without a s ta tement   emphas iz ing   the   se r ious   shor tage  of both  re l iable   experi-  

menta l   resu l t s   and   exper imenta l   methods   for   these   mater ia l s .   (See   a l so  

Ref. 39). 



VISCOELASTIC  FIBER  REINFORCED  MATERIALS 

Introduction 

Present   f ibrous  composl t t*s   contain  very  s t rong  and  s t i f f   f ibers   which 

a re   c tnbcddcd  in a rclativc-ly  soft  matrix.  The  use of t hese   ma te r i a l s   fo r  

long t imes  under   load  ra iscs  the question of t ime-dependent   mater ia l   proper-  

t ies .  .4n approach to t h i s  prohlcm  is   descr ibed  herein.   Considered  here  is  

unIaxia1  ranrlom re in l ' r )rc :c t l l t -n l  i n  which  case is obtained  an  anisotropic 

tnatc-rial  n*hich has vcry grcbat s t rength in f iber   direct ion  and i s  re la t ively 

wcaak i n  t h c  t rans\ ,crse   dirc ,c t ion.  A reccnt   comprehens ive   appra isa l   and  

survc.y o i  the  subjcct of mcc-hanics of f iber   re inforced   mater ia l s   i s   g iven   in  

~ 1 8 ~  . - - 8  

It secms  tha t  at the prcasc-nt  t ime  the  best   understood  aspect  of mechanical  

bchavior of f iber  reinforcccl  tnatcrials  is   prediction of their   e las t ic   moduli   in  

t e r m s  of fiber  and  matrix  moduli   and  internal  geometry,   though  even  here 

much  remains  to  be  done. I n  t h e  event of uniar ia l   random  reinforcement ,   the  

mater ia l   i s   t ransversely  isotropic   and  has   f ive  independent   effect ive  e las t ic  

moduli.  Hashin  and  Rosen [61  considered  an  ideal ized  model  of a random 

a r r a y  of paral le l   hol low  or   sol id   f ibers   embedded  in  a mat r ix .   This   model  of 

a f iber   re inforced   mater ia l   wi l l   hence   for th   be   re fe r red   to  as  a composite 

cyl inder   assemblage.   Closed  form  expressions  for   four   e las t ic   moduli   and 

bounds  for a fifth  modulus, of such  an  assemblage,   were  obtained  in  C6] . 

In  the  general   case of i r regular ly   shaped   and   randomly   p laced   f ibers   the  

problem  i s  a s ta t i s t ica l   one .   The   f i r s t   s teps   in   the   t rea tment  of this  difficult 
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re ference   to   the   p resent   case ,   assume  tha t  a cylindrical   specimen of 

f iber   re inforced   mater ia l ,   whose   genera tors   a re   para l le l   to   the   f ibers ,  

and  which  contains  very  many  fibers,  is subjected  to  boundary  displace- 

ments  of the   form 

Here   the   range  of subsc r ip t s   i s  1, 2 ,  3, a repeated  subscr ipt   denotes   sum- 

mation, S is the  bounding  surface, t is t ime,  € ( t )   a re   space   cons tan t   s t ra ins  

and  x .   are   Cartesian  coordinates .   Here  and  in   what   fol lows  i t  is a s s u m e d  

that   the   mater ia l  is unstressed  and  undeformed  for   t<o.   For  (2.1)  applied 

the  volume  average  s t ra ins  are  € , . ( t)  and  because of assumed  s ta t i s t ica l  

homogenei ty   they  a lso  are   the  local   s t ra in   averages  over   large  enough 

N 

ij  

1 

N 

1J 

subregions of the  specimen. In the   p resent   case   these   subregions   a re  

cylinders  extending  from  base  to  base  in  the  specimen.  They  are  small  

p a r t s  of the  specimen,  yet   large  enough  to  be  representative of the  mater ia l .  

Assume now that (t) are  given  in   the  special   form 
N 

ij  

where e.. are   constant   and  H(t)  is the  Heaviside  step  function.  Because of 

a s sumed   phase   l i nea r i ty   t he   ave rage   s t r e s ses   a r e   l i nea r ly   r e l a t ed   t o  € . 
In genera l  

0 

1J 
0 

i j  
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problem  have  been  taken by  Hill ~ 1 5 ~  and  Hashin L14A who  have  given 

bounds  for  the  f ive  effective  moduli ,   in  terms of phase  moduli  and  phase 

volume  fractions  only.   Moreover,   i t   has  been  shown i n  1.141 on  the  basis  

ol' thl. results  obtained  in ~ijJ tha t   a l l   pa i r s  of bounds,   except  perhaps  one,  

arc' best   possible in t e r m s  of phase  moduli   and  volume  fractions.  In o ther  

\vords,  t o  improve  the  bounds  more  information  about   the  phase  geometry 

is required.  

The moti\-ation  for  thc  present  study  is   the  fact   that   thc  matrix  in  f iber 

rc inforced  mater ia ls  is  i n  many  cases  a resin  which  exhibits  t ime  effects.  

The  simplest  model fo r  such a t ime  dependent  material  is a l inear   visco-  

~ ' l ; + . < t ~ t  ~ B I I L - .  Accr,r(li~-~gly, thc problem  to  be  considered  is  that of the 

prediction of macrost :opi<.   v iscoelast ic   propert ies  of a mater ia l   composed 

of a l incar  viscoelastic  matrix  which is uniaxially  reinforced by elast ic   f ibers .  

It h a s  recently Lecn shown  by  Hashin L401 that 

c las t ic   r r laxat ion  moduli   (and  creep  compliances 

elastic  moduli   and  visco- 

) of heterogeneous  mater ia ls  

of ident ical   phase  geometry,   arc   re la ted  by  the  analogy  which  has   become 

known as  the  correspondence  pr inciple .   The  purpose of the  present   invest i -  

gat ion  is  to exploit   this  analogy  and  the  results  given  in L6J in   o rder   to   der ive  

n la~ . roscopic   v i scoe las t ic   p roper t ies   for   the   composi te   cy l inder   assemblage  

model of a f iber   re inforced  mater ia l   which  has   been  introduced  and  descr ibed 

i n  L ~ A .  

2 .  GENERAL THEORY 

T h e  effect ive  re laxat ion  moduli   and  creep  compliances of l inear   viscoelast ic  

I l~~tcrogcneous  media   have  been  def ined  in  L401. TO  recapi tulate ,   wi th   special  
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where  overbar   denotes   average.   The  components  of the  fourth  rank  tensor  

Ci ikl   are   def ined as  the  effective  relaxation  moduli .   They  depend  in  general  

upon  the  entire  phase  geometry.  

.so 

Dually,   let   tractions of the  form 

be   p rescr ibed .   Here  0.. ( t )   a r e   space   cons t an t   s t r e s ses   and  x .  a r e   t h e  

components of the  outward  uni t   normal .   Then  the  average  s t resses   are  

u , . ( t ) .   Again  assume  the  special   form 

N 

'J 1 

N 

1J 

where  0 . .  are   constant .   Then  the  average  s t ra ins   may  be  wri t ten  in  
1J 

the   form 

0 

- 
< , . ( t )  = J::: ( t )  00, 

1J i j   kl  1J 

The J'F. a re   def ined  as  the  effective  creep  compliances.  
IJ kl 

For the  general  boundary  conditions  (2.1)  and  (2.4) it follows  by  super- 

posit ion  in  t ime  that  



whcrc  in  (2.7) 7. is r and  in ( 2 .  8) 0.. is 07.. 
- 

IJ ij 1J 1J 

It is ,   however ,   c lear   that  (2 .  3 ) ,  ( 2 . 6 )  and  (2.7-8)  have a mor,e  general   in- 

11-rprc.tation.  They  apply in a n y  case   where   the   spec imen is subjected  to   s ta t is t i -  

cally  honlogcncous  states of stress and  strain.   The  boundary  conditions (2.1)  and 

( 2 .  4) a r c   m c r e l y  a devlce to produce  such  statist ically  homogeneous  f ields.   Therc- 

iorcs, thy  a v e r a g c   s t r c s s e s  in  ( 2 .  7-8) m a y  be   in te rpre ted  as the same quant i t ies  

ant1 thc- same is t rue   for  thc  average   s t ra ins .  In the  case of the  present   specif ic  

boundary  (.onditions  such  1-quivalence  would fail only  in a very   nar row  layer   near  

t h e  boundary,  and  would  hold  further  away. 

In  o r d e r  to  account  for  discontinuities  in  t ime of appl ied   average   s t ra ins  

or s t rc>sses ,   p r imar i ly  at t = 0, the   s t ress -s t ra in   re la t ions   (2 .7-8)  m a y  

br writ ten a s  St ie l t jes   convolut ions.   (Compare  e .g .  L4u.) Here  the  Riemann 

convolution  form of ( 2 .  7-8)  will  be  used  with  the  understanding  that  the  inte- 

grands  may  involve  delta  functions. 

The one sided  Laplace  t ransform  (LT) df ( 2 .  7-8) is given  by 

where p is   the   t ransform  var iable   and  the  c i rcumflex  above a symbol   denotes  

LT.   Because of the   formal   resemblance   to   an   e las t ic   s t ress -s t ra in   l aw 

A ::: 
quallt1tic:L PC (p )   a r e   t e rmed   t r ans fo rm  domain  (TD) effective  moduli 

the  quant i t ies   pJ . .   are   termed  TD  effect ive  compliances.   Subst i tut ing 

ijkl 
4 ::: 

IJ kl 

the 

and 

( 2 . 9 )  

(2.10) 
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(2.10)  into  (2.9)  i t   follows  immediately  that   the  TD  effective  moduli   tensor 

and  the  TD  effective  compliances  tensor are rec iproca l .  

The   f iber   re inforced   mater ia l s   here   cons idered   a re   t ransverse ly   i so t ropic ,  

the  f iber  direction  being  the axis of axial   symmetry.   Taking  into  account   this  

symmetry  and  a lso  ref lect ional   symmetry  with  respect   to   the  t ransverse  plane,  

normal  to the  f ibers,   i t   follows  exactly as fo r   an   e l a s t i c   s t r e s s - s t r a in  l a w  

t h a t  there  remain  only  f ive  independent  TD  effective  moduli   in ( 2 .  9 ) .  Refer r ing  

the  f iber   re inforced  specimen  to  a Cartesian  system of axes  x where  x 

is i n  f iber   direct ion  and x x a r e  in  the  transverse  plane,  and  adopting  for  con- 

venience a s ix  by s ix   matr ix   notat ion  for   the  effect ive  TD  moduli ,   Equat ion  (2 .9)  

can  be  rewri t ten  in   precisely  the  same  form as given  in 1 6 1  . Thus  

1 x2 x3' 1 

2 3  

(2.14) 

The  TD  s t ress-s t ra in   re la t ion  (2 .10)   can of course  be  wri t ten  in   ent i re ly  

analogous  form.  

Again, as in   the  e las t ic  case, i t  is convenient  to  define  the  following  four 

physically  significant  TD  moduli. 
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( 2 .  17) 

n ... A ::: A::: A ::: 
p G" = p G1' p G = p c 

12 J 1 44 

ancl to choos t .  p C l l  as  the  fifth  independent  TD  modulus. 
A ::: 

I ~ L . I - c .  1 ) 1 < ~  is I h c .  plane  s t ra in   effect ive  TD  bulk  modulus,  pC23 the 

c.fic.(-tivc T U  transverse shear   modulus ,  p? the  effective  TD axial s h e a r  

n10(1u111s, pE the c*Ifcctivc  TD  Young's  modulus  and  PC  is  associated  with 

r l n i a s l a l  s t r t . ss  in f iber   direct ion,   wi th   t ransverse  deformation  prevented 

b y  n r l g l d  bontlcd enclosure.  

, ::: A ::: 

1 
*::: A:: 

1 11 

Thc  TD  c.ffcctivc  compliances  associated  with  (2.17 - 2. 2 0 )  and p&:: 
11 

will bc consistc*ntly  denoted  by  corresponding small l e t t e r s .   F r o m   t h e  

reciproci ty  o l  the T D  moduli   and  compliance  tensors  stem  the  following 

silnpl(% relations:  

(2.18) 

(2.19) 

(2. L O )  

(2.21) 

h ::: 1 
P g Z 3  (P) = 1': 

P"; " ,(PI ( 2 . 2 2 )  
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1 (2.23) 

The  physical   significance of the  chosen  effective  relaxation  moduli   and  creep 

compliances  wil l   be   fur ther   brought   out   in   appl icat ions,   below.  

A correspondence  pr inciple   for   effect ive  re laxat ion  moduli   and  creep  com- 

pliances of viscoelast ic   heterogeneous  media   has   been  given  in  [40! for  the 

specif ic   case of s ta t is t ical   i sotropy.   However ,  as s ta ted   there   the   cor res -  

pondence  holds  equally  well  for  anisotropic  heterogeneous  media,  the  proof 

being  completely  analogous  to  the  isotropic  case.   Therefore,   this  corres- 

pondence  principle  can hc immediately  wri t ten  down  for   the  present   case of a 

v iscoe las t ic   f iber   re inforced   mater ia l  of t ransverse   i so t ropy .  

Cons ider   f i r s t   thc   case   o f  a two  phase  elastic  f iber  reinforxed  specimen, 

whose  phases   are   l inear ly   e las t ic ,   homogeneous,   and  for   s implici ty ,   i sotropic  

L e t  i t   be   assumed  that  f o r  some  specif ic   geometry  the  f ive  effect ive  e las t ic  

moduli C are exactly known  in t e r m s  of   phase  e las t ic   moduli   and  geometr ical  
:::E 
ij   kl 

(2.24) 

(2 .25)  

phase  detai ls .   Consider  now a spec imen of ent i re ly   ident ical   phase  geometry 

whose  phases,   however,   are  l inearly  viscoelastic,   homogeneous  and  isotropic.  
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Then  the  TD  effective  moduli ,   or  in  other  words  the LT of the  effective 

relaxat ion  moduli   and  creep  compliances,  of the  viscoelast ic   specimen 

can  be  directly  writ ten  down  by  making  certain  replacements  in  the  expres- 

s i o n s  for  the  effective  elastic  moduli  of the  e las t ic  fiber reinforced  mater ia l .  

To explain  these  replacemc~nts ,   two  different   cases   have  to   be  considered 

scpara tc ly .   F i r s t   assume  tha t   the   v i scoe las t ic   phase   s t ress -s t ra in   re la t ions  

arc. of the  different ia l   operator   type,   thus   a t   any  point  x in   the  r th   phase - 

R r  

P 
r 

where r = 1,  L is   the   phase  number,  D = d/dt ,  a and s , .  are   i so t ropic   and  

deviator ic   par ts  of  thc. s t r e s s  o.,, c a n d e , .  are  isotropic   and  deviator ic  

r r 

1J 
r r  r 

1J 1J 

parts  of thc  strain c,. , and  Rr,  P , Q , are  polynomials  in D. Then  in 

o r d e r  to  obtain  the T D  moduli of the  viscoelastic  specimen  the  following 

replacement  scheme  should  be  used: 

1J 'r' r r 

( 2 . 2 6 )  

( 2 . 2 7 )  

( 2 . 2 8 )  

( 2 . 2 9 )  

where K and G are   the   phase   bu lk   and   shear   modul i   appear ing   in   the  

expressions  for  the  effective  elastic  moduli  C?.E of the  e las t ic   specimen.  

E E 
r r 

i~ k l  
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In   the  second  case  assume  that   the   phase  s t ress-s t ra in   re la t ions 

are  specified  in  the  more  general ,   hereditary  integral   form.  For  the 

.th phase 

t 
~ ~ ( 5 ,  t) = 3 K, .(t-T) a c r ( x ,  7 )  d7  (2.30) 

0 

where  Kr( t )   and  Gr( t )  are  the  bulk  and  shear  relaxation  moduli ,   respec- 

tively, of the  rth  phase.  Dually 

r 1 t a 
a 7  E (x, t) = 7s  Ir(t-7) - O r ( ? ,  7 )  dT (2.  32) 

0 

where Ir(t) and Jr(t)  a re   the   bu lk   and   shear   c reep   compl iances ,   respec-  

t ively.   Then  the  replacement  scheme  analogous  to (2-. 28-2.29)  becomes 

(2. 34) 

(2.35) 
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It is  important  to  note  that  when  the.  viscoelastic  specimen  has  an 

elast ic   phase,  as  in   the  case  to   be  considered  here ,   the   replacement  

s c h ( . m c s  (2.  28-2. 2 9 )  and  (2.  34-2. 3 5 )  show  that  the  elastic  moduli of 

that   phase  are  left   unmodified  in the replacement   scheme.  

Thus  the  problem of finding  effective  relaxation  moduli,  when  effective 

c.lastic  moduli a r e  known,  is   reduced  to  Laplace  transform  inversion. 

The  effect ive  creep  compliances  are   iound  in  a similar  way  on  using 

relations of type (2 .  21-2. 2 5 ) .  

The  analogy  which  has  been  outlined  above  will  be  used  to  find  the 

v iscor las t ic   counterpar t s  of the  e las t ic   resul ts   obtained  in  c 61.  While 

thc  procedure  is   s t ra ightforward,   analyt ical   inversion of the   t ransforms 

is i n  general   only  possible  if the   phase   s t ress -s t ra in   re la t ions  are  of type 

( 2 .  2 6 - 2 .  27 ) .  Even   for   the   s imples t   cases  of Maxwell   or  Kelvin  models 

the  inversion  requires   heavy  calculat ions.   I t   becomes  prohibi t ively  cum- 

bersome  for   more  complicated  models .   The  s i tuat ion is w o r s e   f o r   s t r e s s -  

s t ra in   re la t ions  of type  (2.  30-2.  33)  since  in  general  the  kernels  are  only 

known numerical ly   f rom  experiment ,   whence  the  inversion  must   be  per-  

formed  numerical ly ,   which  general ly   requires  a computer.  Unfortunately, 

t he   s t r e s s - s t r a in   r e l a t ions  of type ( 2 .  30-2.  33) are  the  more  important  

ones  from  the  practical   point of view. It turns  out,   however,   that  

important  conclusions  about  the  effective  relaxation  moduli   and  creep 

functions  can  be  reached  without LT inversion.  This  can.be  done  on  the 



bas is  of some  genera l   theorems  re la t ing   the   va lue  of a function  to  i ts  

t ransform  which  are  known as Abel-Tauber   theorems.   The  theorems 

can  be  writ ten  in  the  following  form  (compare  e.g.  L42J). 

l- f 

t 4 o+ 

t * t m  

p - t "  

p - ot n >-1 

where  ?(p) is the  one  sided LT of a function  f(t),  and ris the  Gamma 

function. Of par t icular   importance  for   the  present   purpose is the  special  

case  n = 0. Then (2 .  3 6 )  reduces  to 

l i m  f ( t )  = lim  pf(p) 

p + t m  t -0 t 

t - t m  P -ot 

It  should now be remembered   tha t   the  T D  effective  moduli  which are 

direct ly   given  by  the  correspondence  pr inciple   are  of t h e   f o r m  p?? (p); 

compare ( 2 . 9 )  and  a lso  (2 .17-2.20) .   Thus  f rom  (2.37)  

1j kl  

p 

( 2 .  3 6 )  

( 2 .  37) 

( 2 .  38) 
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(Henceforth,   an  argument  o as  in  the  left  side  of  (2.38) is to  be in te rpre ted  

as  .) NOW p 6;. (p)   a re   found  f rom  the   e f fec t ive   e las t ic   modul i  C?.E 

by  the  replacement  scheme  (2.   34-2.35).   Hence  to  f ind  the  r ight  sides 

of ( 2 .  38-2.  39)  it i s   n e c e s s a r y  to  substitute  in C. the  l imiting  values 

of (2 .  34-2.  35)  for  p- t a, o+. Applying ( 2 .  37)  again 

. .I_ 

t 11 kl 1~ kl  

::E 
lj   kl 

and s imi l a r ly   fo r   pK  (p ) .  

.I. 

It   follows  that   in  order  to  f ind C". (o+) all that is needed is to   rep lace  
ij  kl 

E E ::: E Kr  and G in  C..  by K (0) and  Gr (o), respect ively.   Similar ly ,   in  

order  to  find  Cyjkl (m), Kf: and GE in C:jEl, are  replaced  by K (") and 

GI("). Thus,   the  init ial   and  f inal   asymptotic  relaxation  moduli   can  be 

simply  found  in  terms of direct   experimental   information.  

r 1~ kl ' r 
.I. 

r r 

The  result   concerning  the  init ial   values of the  moduli  is physically 

a lmost   obvious   s ince   i t   mere ly  asserts that   the   ini t ia l   response is a n  

e las t ic   one   in   t e rms  of   the  ini t ia l   e las t ic   responses  of the  phases .   The 

result   for  infinite  t ime is more  interest ing  and  qui te   important ,   s ince  in  

many  applications  the  behavior  after  long time is all that is needed. 

(2.40) 

(2. 41) 



Once  the  relaxation  moduli   for t = o m a r e  known, L h c :  c r ~ c - p  . ; ! r , p l i -  

ances   for   the   same  t imes   can   be  easily found,  for as has  been  pointed  out 

above  the  tensors  p Cp (p)  and p Jijkl (p)   in   (2 .9-2.10)   are   reciprocal ,  

whence  it  follows  from  (2.  37)  that Cf:. (0) and Jf:. (0) are  rec iproca l  

and  that C:, (=) and J". (") a re   r ec ip roca l .  For thc special   TD  moduli  

t' 

.I. 
, I .  

1j kl 

iJ kl 1~ kl  
.I- 

1~ kl  ij   kl 

and  compliances  defined  in  (2.21-2.  25),  the  values of a relaxation  modulus 

and a creep  compliance  a t  o+, "are   s imply   mutua l ly   rec iproca l .  

3. PLANE  STRAIN  DILATION 

Assume  that   the  f iber  reinforced  specimen  is   subjected  to  the  average 

s t r a ins  

- 
€ (t) = 0 

11 

- 
E (t) = r (t)  = T(t) 

22 3 3  

by  choice of (3.1) as  the  strains  in  (2.1).  Then  the  only  non-vanishinx 
- - - 

a v e r a g e   s t r e s s e s   a r e  a 

law  (2.11-2.13)'  in  the  time  domain,  then  becomes 

1 P  22 
- ( t )  = u ( t )  = 0 ( t ) .   The   s t r e s s - s t r a in  

33 

Now a s s u m e   a v e r a g e   s t r e s s e s  

- 
cs 22 (t)  =:33 ( t )  = cl ( t )  

- 

retaining  the  plane  strain  condition T ( t )  = 0. Then 
11 

- - - 1 .b 

~ ~ ~ ( t )  = ( t )  = E ( t )  = - J k"- (t-?) -- dT(7) d7 
3 3  2 o 23 d r  

(3 .  4) 

(3 .5)  
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.* ... 
I,. 

where  K” ( t )   and k (t)  are related  by  (2.21). To compute 0 (t), 

( 3 .  5)  now has  to  be  inserted  into ( 3 . 2 ) .  

- 
2 3   2 3  11 

-1. 
e,- 

In order   to   use   the   cor respondence   pr inc ip le   for   eva lua t ion  of K 

and k”. the   resul ts   for   the  plane  s t ra in   bulk  modulus of an   e l a s t i c  
.,. 2 3  

2 3  

f iber - re inforced   mater ia l  are  needed.   For   the  composi te   cyl inder  as-  

semblage  model  introduced in 12  -I, the  results  will   be  given  for  convenience 

i n  the  form  used in L14J . Thus  
( ::: ) 

:::E V 
K = A E  + f 

2 3  m 1 V 
t m 

A E  - # E tiE + G E  
f m m m 

Here  and  henceforward,   subscr ipts  f and m denote   f ibers   and  matr ix ,  

respectively.   The  symbol % in  ( 3 . 6 )  denotes   plane  s t ra in   e las t ic   bulk 
r; 

modulus  which  for  the  present  isotropic  phases  is  given by 

A E = K  t - G  E 1  E 
3 

E E 
in t e r m s  of usual  bulk  and  shear  moduli ,  K and G 

( 3 . 6 )  



Assuming  e las t ic   f ibers   and  using (3.7) and  the  correspondence 

principle,  (3 .  6 )  t ransforms  in to  

H e r e  Y, (p)  and r (p)   are   given  by  (2 .28-2.29)   or  (2.34-2. 3 5 ) ,  and 

(3. 8) then  defines  the LT of the  relaxation  modulus K” (t). 

m m 
.I. 

23 

To simplify ( 3 .  8) le t  it f i r s t   be   assumed  tha t   the   mat r ix  is e las t ic  

in  dilatation.  It is easi ly  shown that in this  event 

x ( P I  = K m  
E 

m 

where K is the  elastic  bulk  modulus. A very   s imple   case   represent ing  

(2.28-2.29) is a Maxwell  model,  for  which 

m 

where 

M 
77 

G 
T = A  

M 

( 3 . 9 )  

(3.10) 

m 
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and T7: and G z  are   the  viscosi ty   coeff ic ient   and  shear   modulus  respect ive-  

ly. 

It is a s t ra ight   forward  mat ter   to   inser t  ( 3 .  9 -3 .  1 1 )  into ( 3 . 8 )  and  to 

then  find  Ki3(t)  by  the  method of partial   fractions,   but  the  result ing 

express ions  are  very  complicated.   Instead,   another   s implif ied  procedure 

w i l l  be  here  used.  Because of the  considerable   s t i f fness  of the  f ibers  

.I. 

relative to the m a t r i s ,  i n  p rac t ice ,   the   former  wi l l  be  assumed  to  be 

pericctly  rigid. In  that  event (3. 6) s implif ies  to 

KE3E - 
- Km t " G  t ( K m t  "G )- E 1 E  E 4 E  C 

3 In . 3  m l - c  

where  ( 3 . 7 )  has  been  used,  and 

v " c  
f 

v = 1 - c  
m 

( 3 . 1 2 )  

( 3 .  13) 

Using  the  correspondence  principle  with  the  general   replacement 

( 2 .   3 4 - 2 .  35), ( 3 . 2 1 )  t ransforms  to  

" 

which  on  cancelling  the  common  factor p, immediately  yields  by 

inversion  into  the  time  domain 



r 1 

Thus  the  plane  strain  effective  relaxation  modulus is explicit ly 

expressed  for   the  whole  t ime  range  in   terms of the matrix relaxat ion 

moduli   by  the  same  formula as (3.12).  Equation  (3.15) is a v e r y  at- 

t rac t ive   resu l t   s ince   i t   permi ts   the   d i rec t   use  of measured   re laxa t ion  

moduli. A s imi la r   resu l t   has   been   found  in  bo1 for   the  three-dimensional  

bulk  relaxation  modulus of a r igid  par t ic le   suspension.   However ,   no 

resu l t   s imi la r   to   (3 .  15) ex is t s   for   the   e f fec t ive   c reep   compl iance  k". 

This   compliance is re la ted   to  K::: by  the  transform  relation  (2.21),   which 

may  be  inverted  into a convolution  type  Volterra  integral   equation of the 

.II 

23' 

23 

second  kind,  which  in  general  must  be  solved  numerically.  (Compare 

L + : ) j  . ) 

T o  show a s imple  resul t   for   the  creep  compliance k". (t), le t   i t   be  
J 

23 

assumed  tha t   the   f ibers  are  r ig id   and   tha t   the   mat r ix  is elast ic   in   di la-  

ta t ion  and  viscoelast ic   in   shear   according  to   the  s imple  Maxwell   model .  

Then  to  f ind pK". (p) ,   replace G in  (3. 12) by  (3.10)  while K rema ins  

unchanged.  Then  use  (2.24)  to  f ind 

.'I .C 

23 m m 

A ::: 
k (P)  = 

23 t T K l F p ]  

(3.15) 

(3.16) 



where  K is   given  by (3.  12).  Inversion of ( 3 .  16)  yields  immediately 
::: E 
23 

TO  provide a ch1:clc on the  general  results  obtained  with use of the  Abel- 

Tauber   theorems  i t  is easi ly  iollnd f rom (3.  17) that 

( 3 .  18) 

( 3 .  19) 

Now (3.  18) is s imply  the  e las t ic   compliance,   whereas  ( 3 .  19) c a n  be 

direct ly   found  f rom  the  reciprocal  of (3.  12 )  by  replacinG K, and  Gm by 

Km( c j , )  and  Gm( ' ), respect ively.  In  the  present  c a s e  K m (  ) = K, E 

and  for a Maxwell   mater ia l  Gm( a )  = 0. Then, ( 3 .  19) follows  immediately.  

E E 

Finally,   the  Abel-Tauber  theorems  will   be  applied in  the  case  where 
.L 

the   f ibers   are   not   assumed  r igid.   The  ini t ia l   value K23(0 )  i s   s imply  

given  by  replacement  of the  matrix  moduli  in  (3.  6)  by  the  corresponding 

init ial   viscoelastic  relaxation  moduli .   To  obtain a s implif ied  expression 

f o r  K i 3 (  ) l e t  it be  assumed  that   the   matr ix   is   e las t ic  in  dilatation. 

Fur thermore ,   for   many  mater ia l s   the   re laxa t ion   modul i   reduce   to  a small 

.I_ 



f ract ion of their   in i t ia l   values ,   af ter  long time. Accordingly, G (”) m 

will  be  neglected  in (3.6) in   comparison  to   other   moduli .   Under   these 

circumstances  the  following  result  is easily found 

E 

4 .  AXIAL SHEAR 

Let  the  fiber  reinforced  specimen  be  subjected  to  the  average  shear 

s t r a i n s  

and  all’other  average  strain  components  vanish.   The  system  (4.1) is a 

shearing  action  on  planes  normal  and  parallel  to the   f ibers .   The   t rans-  

formed  e f fec t ive   s t ress -s t ra in   re la t ion  is given  by  (2.14)  or  (2.15)  which 

becomes  in  the  time  domain 

where  

s (t) = 0 (t) = a (t)  
12 21 

(3.20) 

(4.3) 

and all other   average  s t resses   vanish.   Dual ly ,   the   specimen  may  be 

subjec ted   to   the   average   s t ress   sys tem (4.3), the   resu l t ing   average   s t ra ins  

being  (4.1)  and  the  effective  creep  type  stress-strain  relation is then 

-.  .. ...... 



The  quant i t ies  G::: and g". a r e  the  effect ive  axial   shear   re laxat ion  modulus 

and   c reep   compl iancc ,   respec t ive ly ,   and   a re  related by ( 2 . 2 3 ) .  

. I .  

1 1 

:::E 
1 

F o r  an trlastic  composilc  cy-lindcr  asscmblagc the c s p r c s s i o n   f o r  G 

o l J t a i n c c 1  by Hash in  a n d  Rosen, - 6  (Equation 71 for  solid  I ' ibcrs) m a y  be 

~ . , -u ' r i t t cn  a s  t'ollo\\ 5 :  

:::E Gf  (1 t c )  + Gm (1 - c)  E 
m 

E 
G1 = G 

G i  ( I  - c )  t G E  ( I  t c )  
m 

whcrc  c is the   f ract ional  vo lume  of fibers. T h i s   i s  ;L part icular ly   s imple 

csprcAssiun s ince  o n l y  the  phase shear moduli a r e  involved. 

Lct it f i r s t   bc   assumed  tha t   the   f ibers  a r e  elastic and  that   the   matr ix  

is represented  by a Maxwell  model.  Note  that i t  does   no t   mat te r  in th i s  

c a s e  whether   or   not   thc   matr ix   exhibi ts   volume  viscoelast ic i ty .  As a n  

c sample  the  creep  compliance g.'. ( t )   wi l l   be   calculated.   Using  the  corres-  

pondcnce  rule  (2. L 9 ) ,  with  (3.10)  and (2.  2 3 ) ,  a straightforward  calculation 

.1. 

1 

Invert ing  by  par t ia l   f ract ions,  . - - 
C g ( t )  = -c 

m l  I t c  

M ::I 1 

(4.5) 
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where 

4 =- Gf 

GM 
m 

It is seen  that   the   f i rs t   term  in   the  r ight   s ide of (4. 7)  does  not  contain 4 , 

the  second is of o r d e r  4- l ,  and  the  third of o r d e r  I $ - ~ .  For   f ibers   which  

are much  s t i f fer   than  the  matr ix  $ i s  large.   Hence  in   that   case  the  third 

or  both  the  second  and  third  terms  can  be  neglected  in  comparison  to  the 

f i r s t .   Fo r   t he  + usually  encountered  in  practice  retainment of t he   f i r s t  

t e r m  only,  involves  but a few  percent   error .   I t  is seen  that   the   f i rs t  

t e r m  is the  exact  solution  for O + m ,  i. e .  , r igid  f ibers .   Because of the 

l inear   term  in   t ,   the   creep  compliance  becomes  unbounded  for   inf ini te  

t ime. 

A very  s imple  resul t  is obtained i f  i t  is assumed  a t   the ,outse t   tha t  

the   f ibers   a re   r ig id .   The   e las t ic   resu l t  (4. 5 )  then  reduces  to  

- - l t c  
GE 1 -  c m (4 .9)  

(4.10) 
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which  on  cancelling p direct ly   inverts   into 

Thus,   the   re laxat ion  modulus of the   f iber   re inforced   mater ia l  is mere ly  

the  relaxation  modulus of the  matrix  multiplied  by l t  A s imi l a r  
1 - c  

resul t   can  be  obtained  for   the  creep  compliance,   for   i t   fol lows  f rom (2 .23)  

and a n  ana logous   re la t ion   for   p6   (p)   and   p i   (p) ,   tha t  
m m 

where  g  ̂ (p)   is   the  LT of the  matrix  creep  compliance.   Again  (4.  12 )  can  

be dirc,ctly  inverted  to  yield 

m 

g'" ( t )  = 1 - c ( t )  
.*. 

1 gm l t c  

(4.11) 

(4.12) 

Note as  a check  that   the  f irst   part  of the  right  side of (4.7)  could  have 

been  directly  deduced  from  (4.13),   since  the  former  is   the  creep  compliance 

of the  Maxwell  matrix  multiplied  by  the  factor 1 - c . Equations (4.11) 

and  (4 .13)   are   par t icular ly   useful   resul ts   s ince  they  permit   s imple,   d i rect  

determinat ion of viscoelast ic   creep  and  re laxat ion  funct ions  on  the basis 

of measured   mat r ix   behavior .  

l t c  

To i l lustrate   the  use of the  Abel-Tauber   theorems,  Gr (") will   be   calcu-  

lated  from  (4.  5). The   resu l t  is 

(4.13) 

(4.14) 
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Even if G m ( 0 )  is of the   o rder  of magnitude of G usually a relaxation 

modulus   decreases  at t = to  a small fract ion of i ts   init ial   value,  so 

that  the  r igid  f iber  approximation  becomes  applicable  to (4.14)  whence 

i t   reduces  with  sufficient  accuracy  to 

f'  

which  is  of course  in  accordance  with (4.11). Similar ly ,   by  the  same 

reasoning 

which  is  in  accordance  with  (4.13).  Thus,  in  general, if G (") goes  to 

zero,  g (a) becomes  unbounded.  The  important  point  to  remember  is  

that  (4.15-4.16)  will  hold  even if  f i be r s   and   ma t r ix   a r e   i n i t i a l ly  of com- 

m 
.eo 
0,. 

1 

parable  st iffness.  

5. UNIAXIAL  STRESS  IN  FIBER  DIRECTION 

The  f iber   re inforced  specimen is f i rs t   subjected  to   uniaxial   average 

s t r a i n  

- 
E (t) = T ( t )  
11 

while  the lateral surface is free of load.  Then 

(4.15) 

(4.16) 

- 
0 (t) = a (t)  = 0 

22 3 3  



and   a l l   ave rage   shea r   s t r a ins   and   shea r   s t r e s ses   van i sh .   The   r e l a t ion  

between axial a v e r a g e   s t r e s s   a n d   s t r a i n  i s  then  given by 

.I_ 

where E is the  axial   Young's  relaxation  modulus.  
.. 

1 

If instead of (5 .1)   the  specimen  is   subjected  to   average  axial   s t ress  

. while (5 .  2 )  continues  to  hold,   then  the  axial   average  strain is given  by 

.I. -,- -9- 

where   e l   i s   the   ax ia l   Young ' s   c reep   compl iance .   The   func t ions  E". and 

c a re   r e l a t ed  b y  (2 .  2 4 ) .  

1 
_I. .,. 

1 

An expression  for  the  effective  Young's  modulus E of the  composite 
::: E 

1 

cyl inder   assemblage  has   been  given  by  Hashin 'and  Rosen C6I. Hill [ 1 9  

has  given an equivalent  expression  LEquation (3.9)J which is of much 

s impler   a lgebra ic   form.   Therefore   the   l a t te r   form  wi l l   be   here   used .  In 

the  present   notat ion  this   expression  can  be  wri t ten as 

E E E  
E':: E = v  E t v E   t v v G  

E E E (GF/  A f  - G m h m  

1 m m  v A G E  t v itE / G E t l  
m f  m f m m  

where A is the  e las t ic   plane  s t ra in   bulk 'modulus  def ined  by (3. 7). It 
E 
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should  be  noted  that  simplification  to  rigid fibers is not   permit ted  here ,  

since  this  would  result   in  infinite  effective  Young's  modulus.  

Application of the   cor respondence   ru les   to   f ind  E'"(t) from (5.6),  
.I. 

1 

although  straightforward,  involves  very  heavy  calculations,   even  for a 

s imple  Maxwell   matr ix .   Therefore   such  der ivat ions  wil l   not   be   given 

here.   Equation  (5.  6) will  only  be  used  to  find EOr (0) and E". (a) by  the 

Abel -Tauber   theorems  and  as  wil l   be   seen  f rom  the  resul ts   calculat ion 

.I. *. 

1 1 

.L -,- 
of E ( t )   for   the   fu l l   t ime  range  is hardly  needed  for   f iber   re inforced 

mater ia ls   used  in   pract ice .  

1 

The  initial  relaxation  modulus E':: (0) is simply  given  by  inserting 
1 

in (5. 6) the  init ial   phase  relaxation  moduli .   The  third  term  in  (5.6) 

is negligible  in  most  cases,   and  thus 

.b 
E l  (0) = v E (0) t v E 

.C u 

m m  f f  

A sample  calculation  for a typical   f iber   re inforced  mater ia l   wi th  

E (0) = 0. 5 x 106 psi  E = 10. 5 x 106 p s i  
m f 

u (0) = 0 . 3 5  m v = 0.20 
f 

V 
I I I  

= 0 .  3 v = 0 . 7  
f 

shows  that   the  error  due  to  this  approximation is  0. 013% of  (5.7). 



General ly   in   f iber   re inforced  mater ia ls  

E C( E 
m f 

v = 0(Vf)  
111 

In th i s   case   the   f i r s t   t e rm  in   the   r igh t   s ide  of (5. 7 )  can   a l so   be  

neglected,  and  then 

E.'. (0) -v E 
.** 

1 f f  

Turning now to t A m, i t  is seen  that   the  dominant  term  in (5 .6)  is 

the  middle  one  since  all   matrix  relaxation  moduli   become  less  than 

their   init ial   values.   Thus  to a better  approximation  than ( 5 .  8) 

.I. 

E". (") = v E 
- 

1 f f  

.II 
-2. 

Assuming  that E (t)   is   monotonic  i t  is seen  that   the  viscoelastic  effect  
1 
1 

.I_ 

i s  negligible  and E"' ( t )   i s   pract ical ly  
1 

By  the  same  reasoning  the  creep 

constant. 

compliance e is   practically  con- 
.@- 
1- 

1 

stant  for  the  whole  t ime  range  and is given by 

e =  1 

1 
Vf Lf 

(5.10) 

.I- 

To define  an  axial   Poisson 's   ra t io  $ (t) assume  that   the   .average  appl ied 
1 

ax ia l   s t r e s s   (5 .4 )   has   t he   fo rm 
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- 0 
o (t)  = 0 H (t)  (5. 11) 

while  (5.2)  continues  to  hold.   The  average  strains  produced are 

then  (5.1)  and 

.II 
0,. 

Then u (t)  is defined by 1 

.I. 
-1. 

It should  be  noted  that v (t)  cannot  be  found  from  an  expression  for 
1 

an   e l a s t i c   Po i s son ' s   r a t io ,  b y  the  correspondence  rules ,   s ince i t  is not 

a cons tan t   which   re la tes   s t ress   to   s t ra in .   To   compute  v ( t ) ,  T( t )  and 

( t )   have  f i rs t   to   be  calculated.   Introducing  the  t ransforms of the 

.no 
-2. 

1 
- 

S 

present   average   s t resses   and   s t ra ins   in to  (2.11-13) and  solving  for  the 

t ransformed  s t ra ins ,   there   fol lows 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

The TD moduli   entering  into  the  r ight  sides of (5.14 - 15) a re   de t e rmined  

f rom  the i r   e las t ic   counterpar t s  b y  the  correspondence  rules,   whence  result  



t he   t r ans fo rms  of the  average  s t ra ins   which now have  to  be  inverted 

to  the  time  domain.  Note  that  (5.14)  defines  the T D  axial  Young's 

modulus  which  has  already  been  discussed.  The  inversion  being  in 

general   very  complicated,   a t tent ion  wil l   again  be  directed  to   evaluat ion 

at t imes  0, by  the  Abel-Tauber  theorems.  Application of these  

theorems  immediately  shows  that  

::: E 
Recal l ing  that   the   e las t ic   Poisson 's   ra t io  V1 is   given  by  (see L2 1 ) 

2 3  
.I_ 
I,. 

4- 
I,. 

it   is  concluded  that v1 (0) a n d v l  (a) can  simply  be  calculated  from 

V by replacement   of   the   e las t ic   moduli   by  the  ini t ia l   and  f inal   values  
:::E 

1 

of the  relaxation  moduli ,   respectively.  

::: E 
An express ion   forv ,  of a cyl inder   assemblage  has   been  given  in  

L 6 ]  and  an  equivalent   expression of s imple r   fo rm  in  [.15]. The   las t  

express ion  is 

:: E E E E E E 
m m  

~ 

E E 
v / A t v f  / A  t l / G  

E 
m f  m m 

( 5 .  16) 

(5 .  17) 

(5. 18) 

(5.19) 
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T o  find v". (0) and U (") i t  is necessary  to   replace  the  e las t ic   moduli  

i n  (5.19)  by  the  initial  and  final  values of the  relaxation  moduli.  Note  in 

.b .I. 

1 1 

this   respect   that  V (0) and v (") have  to   be  interpreted as  
m m 

v m (") = - 2 1 [") 
m ,  

Considerable  simplification is achieved if i t   i s   assumed  tha t   the   mat r ix  

is   incompressible   and  that  G (") can  be  neglected  relative  to fiber moduli. 

Then 

m 

6. TRANSVERSE  SHEAR 

When the  f iber  reinforced  specimen is subjec ted   to   the   average   shear  

. s t ra in  

and all o ther   average   s t ra ins   vanish ,   the   resu l t ing   average   s t resses   a re  

(5.20) 

(5.21) 

(5.22) 

u (t)  = 0 (t) = s 
23  32 
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and  a l l   o thers   vanish .   The  s t ress  is given  by 

I f ,  on the  othcr  hand, (6 ,  2 )  is prescr ibed ,  thc: s t r a i n  is givcn  by 

Unfortunately  an  csprc .ss ion  for  G of an   e las t ic   composi te   cy l inder  
:::E 
2-3 

assc.mhlage is not known. In the  t reatment   given  in  L6J, this  modulus 

t.o\rld o n l y  bc  bounded  from R I J O V C  and  below.  It is a t   p r e s e n t  not 

k n o w n  how to  es tabl ish such  bounds for visco-elast ic  fiber re inforced 

Ina te r ia l s  for the  wholc  tinw  rang<.. 

It has,   however,   been  shown  by  Schulgasscr \-?’?A, on t h c  b a s i s  of 

the  Abel-Tauber   theorems,   that   e las t ic i ty   bounds on  effective  moduli 

can  bc  transcribed  into  bounds  on  visco-elastic  effective  r(: laxatlon 

moduli   a t   t imes  zero  and  inf ini ty ,   s imply  by  replacement  of phasc 

elast ic   moduli   in   the  bound  expressions,   by  ini t ia l   and  ul t imate   values  

of the  phase  relaxation  moduli .   Consequently  the  bounds  on C 
::: E 

2 3  ’ 
obtained  in L 6 1, c a n  be used to find  bounds  on G (0) and G”’ ( ” )  

::: E .e. 

2 3  2 3  

of a composi te   cyl inder   assemblage.  



If resul ts   for   intermediate   t imes  are   needed,   the   fol lowing  observat ion 

may  be oi some  value.   I t   has   been  shown  in   ~14-1  that  a lower  bound  for 

G of a f iber   re inforced   mater ia l ,   wi th   a rb i t ra ry   f iber   shapes ,  is 

given by the  expression 

:::E 

2 3  

G = G  t I 

L 3 .’( - )  m 1 ( A E  t 2GE 1 v 
m m ’  m 

GE - GE 2GE (BE E t G E  ) 
f m m M  m 

It  may  be  shown  that (6 .  5 )  is   always  between  the  bounds  for G 
::: E 

23 

of a cyl inder   assemblage  which  have  been  der ived  in  [6 3 .  F u r t h e r -  

more,   for  v very  c lose  to   zero  or   very  c lose  to   uni ty ,   these  bounds 

coincide  and  reduce  to  (6.   5).   Therefore,  if the  bounds  for   the  e las t ic  

case   a re   reasonably   c lose ,   there   may  be   some  mer i t   in   rep lac ing   the  

phase  moduli  in (6. 5 )  by TD phase  moduli  and  inverting  into  the  time 

domain.  It m a y  then  be  hoped  that   the  result ing  expression  will   give 

C”i3(t)  of a composi te   cyl inder   assemblage,   approximately.  

f 

.I, 

7.  APPLICATION O F  RESULTS 

As  an  example of the  application of the   resu l t s  of this  study,  the  time 

dependent  properties of a Maxwell   body  will   be  treated.   For  this ma- 

t e r i a l   t he   s t r e s s - s t r a in   r e l a t ions   a r e  of the  form: 
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.The  relaxation  modulus is defined as  the   s t ress   assoc ia ted   wi th  a 

constant unit s t ra in .   Thus:  

e . .   ( t )  = 1 
1J 

The  solution to  t h i s  equation is: 

r I  

G where T = - 
(7. 3 )  

Since 

S E - t / r  = 2G e 
i j  

And  the relaxation  modulus,   G(t) ,  is given by:  

G(t)  = G e 
E - t / r  

(7.  4) 

In  particular,   the  plane  strain  bulk  modulus,  K:::23(t), f o r  a composite of 

r ig id   f ibers  is given  by  eq. ( 3 .  15) .   The  matr ix   wil l   be   assumed  e las t ic   in  

dilation.  Thus: 

(7. 5 )  



F r o m   ( 7 .  4): Gm(t)  = Cm e 
E - t h  

Substitution of e q s .  (7. 5) and  (7. 6) into (3 .  15) yields: 

GE 3 ( 1 - 2 v  ) 

7" 
where  m - m 

m 2(1+ Y m )  

The  normalized  plane  strain  bulk  modulus is presented  as a function 

of the  non-dimensional  t ime  parameter  in  f ig.   27for  several   values of c. 

The   lowes t   curve   represents   an   unre inforced   mat r ix .  

Similar ly ,   the   re laxat ion  modulus  for   shear   in  a fiber  plane,  G:':(t) 
.I. 
1 

is given  by  eq. (4. 11) .   Thus  f rom  eqs.  (7 .  4) and (4. 11): 

GY ( t )   l t c  

1 -c 
- "- e - t /  T 

G: 

Resul t s   for   the   same  va lues  of c used   prev ious ly   a re   p resented   in   f ig .  28 

Another  example of the  application of this   viscoelast ic   analysis  is ob- 

ta ined  by  evaluat ing  the  creep  compliance.   For   this   case  we  consider  

the   s t ra in   assoc ia ted   wi th   the   s t resses :  

s . ( t )  = 1 
1J 

a6 



.and f rom eq. 7. 1: 

e ( t )  = - 1 
i j  27-l 

e ( t ) =  - + C  t 
i j  217 .. 

1 t 
o r  e , .  ( t )  - 

1J 2GE 
(Tf 1) 

The  c reep   compl iance ,   g ( t )  is thus: 

The   c reep   compl iance ,  k."' for r ig id   f ibers   i s   g iven  by (3.   17).   Thus 
23 

It can  be  shown  (ref.  6 )  that  for th i s   case  

k 
::: E 

23 
3( l t 2 c  Y ) 

m 
E -  

- 

K m  2( 1 - c ) (  1t Y m )  

(7 .12)  

Substi tuting  eq.  (7. 12)  into  (7.   11) yields: 



A simple  i l lustrat ion is obtained  for  the  case v = 0 ,  namely ;  
m 

Eq. (7. 14) is plotted  in f i g .  29.  

.Ir 
The  c reep   compl iance   in   shear ,g"   ( t )  is given  by  eq.  (4.  13),  which 1 

with  the  aid of eq. (7.  10)  yields: 

.I, ... 

(7. 15) 

These  resul ts   are   presented  in   f ig .  30. 

8. CONCLUSIONS - 

The  analysis   given  here   may  be  regarded as a first s tep  in   the  theore-  

t ical   evaluation of the  viscoelast ic   propert ies  of f iber   re inforced   mater ia l s  

i n   t e rms  of phase  propert ies .   I t   should  be  remembered  that   the   composi te  

cyl inder   assemblage  model  is only a geometr ical   ideal izat ion of a r e a l   f i b e r  

re inforced  mater ia l .  
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In the  e las t ic   case  the  resul ts   obtained  on  the  basis  of th i s  

model were  in   many  cases   c lose  to   experimental   resul ts .   I t  may 

therefore  be  hoped  that   the  viscoelastic  results  will   exhibit   similar 

fc-atures. To the  author 's   knowledge,   systematic   experimental  

invcstigation of the  viscoc.lastic  properties of f iber   rc inforced 

ma te r i a l s   has  not  Lcen  performed. 



THREE-DIMENSIONAL  REINFORCEMENT 

Filamentary  re inforcement  of composi tes   has   genera l ly   been  of two- 

d imens iona l   charac te r .   That  is, the  f i laments are usually  disposed  to 

provide  reinforcement  in  the  plane of a plate- l ike  composi te ,   or   around  the 

c i rcumference  of a shell ,   for  example.   Reinforcements  through  the  thick- 

nes s  of plates  and  shells  have  not  often  been  attempted.  Thus  the  composites 

have  most  often  had a laminate-like  structure,   similar  to  plywood. 

Lack of reinforcement  through  the  thickness,   while  leading  to  simplifi-  

cations  in  both  composite  fabrication  and  analysis  also  introduces  undesirable 

planes of weakness   in   the  mater ia l .   Probably  mis-named  “ inter laminar  

shear”   fa i lures   have  been  encountered  in   compression;   “shredding’l  

fa i lures  of hoop-wound pressure   vesse ls   have   occur red   in   t ens ion  

and  both  analyt ical   and  experimental   models   (Ref .   11)   have  supported 

the  desirabi l i ty  of added  re inforcement   in   the  thickness   direct ion  for   thin-  

walled as wel l  as thick  composites.  

In this   sect ion of th i s   repor t   ana ly t ica l   p rocedures  are developed  for  the 

evaluation of the  e las t ic   constants  of f i lamentary  composi tes   having  three-  

dimensional   re inforcements .   Formulas   for   these  constants   are   der ived  for  

orthogonal  f i laments,   and  for  skewed  fi laments  having  symmetries  about 

three  orthogonal  axes.   In  the  derivations  some  symplifying  assumptions 

a re   employed;   these   assumpt ions   (or   the   symmetr ies   cons idered)   a re   no t  



essent ia l   to   the  development , - their   importance  wil l   be   discussed  and 

d i rec t ions   for   more   r igorous   and   genera l   ex tens ions   wi l l   be   g iven .   The  

formulas   der ived,   however ,   c .ncompass a wide  new  range of reinforcement 

possibil i t ies,   and  they  will   be  employed  in  the  evaluation of some of the 

potent ia l i t ies   accessible   through  the  use of a three-dilmensional  reinfork.ing 

sys tem.  

Analytical  Approach 

The  approach  used  for  the  three-dimensional  analysis  relatcs  to th , l t  

lollowed i n  Reference. -14to determine  the  propert ies  of intcgrally  stifft.~nc~d 

plates.   Therein  the  reinforcement  provided by integral  stiffening is c ~ v a l u -  

a tcd  a s  fully  effective i n  the  direction of the  stiffening  but  rcducetl i n  

stretching  effectiveness  transverse  to  the  st iffening by ;I factor  . Simi- 

lar ly   the  t ransverse  shear ing  effect iveness  is evaluatcd a s  reduced, - i t )  

this ( - , l s c %  b y  a different  factor p'. With  thc  longiturli~~;~l  .tnd  tran:;vt.rsc. 

c i fect ivcnesses   es tabl ished,   the   remainder  of the  analysis   is  a s t ra ight -  

forward  e las t ic i ty   problem of tr igonometric  resolution  and  summation of 

s t i f fnesses  to yield  the  desired  e las t ic   constants .  

P 

The  basis   for   thc  extension of the  integral   st iffening  analysis  to  i i la-  

lnentary  composi tes   is   i l lust rated  schematical ly   in   Figure 3 1 .  In this  f igure 

the  portion of the  binder  material   betweeii   If laments i n  n uni-directionally 

reinforced  f i lamentary  composite  is   shown  to  be  similar to the  skin  and  inte- 

gral   r ibbing of integrally  stiffened  plates.  Neglecting  the  filaments  (i.  e .  , 

I 



treating  them  for  the  moment as holes)  the  st iffness of such a two- 

dimensional   array  may  be  wri t ten  according  to   the  analysis  of Reference 44 

ei ther  as  

or  converting  to 

= 

the  nomenclature  for  composi 

r 

In  these  equations 

fs 
3 

63 

b, 
P-, 

Vb 

te s 

- 

stiffness  transverse  to  round  holes  in  binder 

Young's  modulus of b inder   mater ia l  

"skin  thickness" - thickness of s t ra ight   e le -  

ments  of binder (if a n y )  betwcJen holes 

Poisson ' s   ra t io  

t ransverse   e f fec t iveness   o fd   - shaped   mater ia l  

between  holes  in  binder 

c ros s - sec t iona l   a r ea   o f l   - shaped   ma te r i a l   be tween  

holes 

hole  spacing 

t ransverse  effect iveness   lost   by  making  holes   in  

binder 

volume  fraction of b inder   mater ia l  
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The  next  step is evidently  to  fill   the  holes  with  filaments  to  yield 

a ! ~  equation  for  the  two-dimensional  composite as  follows: 

\\,hc,rc  for  simplicity  the  Poisson's  ratios of fi laments  and  binder  have  been 

assumc*d  equal;  pe represents   the  t ransverse  effect iveness  of the  f i lament,  

a n d  E is  the Y o u n g ' s  m o d u l u s  of the  f i lamentary  mater ia l .  
i 

Extension of this  type of analysis   to   three  dimension  and  for   appl i -  

cation t o  f i laments   and  binders  of different   Poisson 's   ra t ios  is discussed i n  

the  following  sections. 

Equat ions  for   Elast ic   Constants  

General  Equations - The  e las t ic   constants   evaluated  in   the  three-  

dimensional   analysis   are   those  appl icable   to   an  or thotropic   composi te   having 

re inforcements   symmetr ica l ly   d i sposed   about   the   th ree   p r inc ipa l   axes   a t   p lus  

and  minus  the  angles  indicated  in  Figure 32. Fo r   such  a compos i t e   t he re   a r e  

nine  elastic  constants  defined  by  the  following  equations: 
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= A  
12 7 12 

= A  Y 
23  8 23  

r = A  Y 
13 9 13 

where  

G o o d i rec t   s t r e s ses   i n   t he  1-, 2-,   and  3-directions 
1’ 2’ 3 

;’ E d i rec t   s t ra ins   in   the  1-, 2- ,  and  3-directions 3 

7 
1.2’  ‘23’  ‘13 

s h e a r   s t r e s s e s   i n   t h e  1-2,  2-3,  and  1-3  planes 

‘ 5 2 ’   3 3 ,  
Yl3 shear  strains  in  the  1-2,   2-3,   and  1-3  planes 

and  the A ’ s  are  the  e las t ic   constants   given by the  equations  in  the  following 

sect ion.   These  constants  are  related  to   the  convent ional   s t re tching  and 

shear ing  s t i f fnesses  E E and E 3, G12, G23,  and G and  Poisson’s  
1’ 2’ 13’ 

ra t ios  v v and v b y  the  following  equations: 
21’ 32’ 31’ 

2 2 

E = A  - A2 A6 - A2  A3 A.5 A S A   - A  A A  
2 1 1  1 

A4 A6-A5 A4 A6’A5 

- 2 3 5  

E = A  - 
2 4  

A; A6 - A2 A3  A5 AI A; - A2  A3 A, 

A A -A: 
- 

1 6  
AI A6 - AS 

A: A~ - A ~  A A 
3 5  A1 A: 2  3 5 

- A  A A 
E = A  - 

3 6  
- 

A A - A i  
1 4  

A1 A4 - A i  

v21 = A2 - A3  A5 

A1 A 6  - A3 
2 
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A1A5 - A2A 

2 
1 4  2 

v =  
32 A A   - A  

v = A3A4 - A2A 

A A   - A L  
31 2 

1 4  

GIZ = A 
7 

G2 3 
= A  

8 

G13 = A 
9 

General  equations  l ike ( 3 1 )  and ( 3 2 )  t l l ay  LC fount]  in  the  literature  of 

three-dimensional  elasticity  for  application  to a n y  orthotropic  solid  with 

the  specif ied  symmetr ies  ( s o  that  couplings  among  shears  and  displacc- 

ments   are   avoided) .   The  evaluat ion of  the  constants  employed  in  these 

equations  for  f i lamentary  composites,   however,   involves  less  standard 

p rocedures .   These   spec ia l   cha rac t e r i s t i c s   a r e   d i scussed   and   i l l u s t r a t ed  

for  specific  cases  in  thc  following  sections. 

Derivations - The  elastic  constants  for  the  three-dimensionally  rein- 

forced   Composi tes   a re   der ived  b y  par t ia l   d i f ferent ia t ions of the  general  

expression  for   the  s t ra in   energy of a repeat ing  rectangular   e lement   bl  

by  b2  by b of the  composite.   This  derivation is analogous  to  that  in 

Reference 44 for  integrally-stiffened  plates  with  the  following  differences: 

(1) It i s  a three-d imens iona l   ra ther   than  a two-dimensional  analysis.  

(2)   Proper t ies  of binder   and  f i laments   are   different ,   whereas   r ibs  

3 

and skin in   Reference  44 were  of the   same  mater ia l .  
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( 3 )  Only  extension  and  shearing are considered.   Reference 44 

also  evaluated  bending  and  twisting  st iffnesses.   Thus  the 

impl ic i t   assumpt ion   i s   made   tha t   the   composi te  is homo- 

geneous,   and  bending  and  twisting  st iffnesses  can  be  evalu- 

a ted   in   t e rms  of the  stretching  and  shearing  constants.  Non- 

homogeneities  through  the  thickness  direction  could  be  readily 

taken  into  account, if desired,   with a re-derivation  extended 

in  further  analogy to the  waffle-stiffening of Reference 44. 

Non-homogeneities  in  the  other  two  directions,   however,  

would require   such  major   modif icat ions  that   they  can  hardly 

be   cons idered   in   t e rms  of the  present   analysis .  

The   genera l   express ions   for   the   s t ra in   energy  of s t re tching of a composite 
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b. 

97 



where  

V = s t ra in   energy  of dis tor t ion 

E = Young's  modulus 

G = shear   modulus  

3 = Poi s son ' s   r a t io  

6 = extensional   s t ra in  

8 = shea r   s t r a in  

v = volume  fraction 

Subscr ipts  

f = f i lament  

b = binder  

1, 2 ,  3,  s = 1-, 2- ,  3 - ,  skew  directions 

S = a l o n p  skew direct ion 
L 

( 3 3 )  
Conc. 

S = t ransverse  to   skew  direct ion 
T 
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Evident   in   the  foregoing  expression are the   var ious  s r e p r e -  

sentative of the   t ransverse   e f fec t ivenesses  of the  f i laments   and  binder  

P '  

elements   among  f i laments .  J'or silnplc  cxtcnsion,  such  that   thc e n e r g y  

is mcasured  by  an  exprcbssion of thr  form 

for example ,   the   ana logy   be tween  thep ' s  of Reference 44 and  those  used 

herc in  is comple te .   For   Poisson   ex tens ions  of the  form 

howc\*(-r,  the  physical  motlcl of reduced  effect iveness   is   somewhat   different ,  

and  strictly  speaking a different  effectiveness  factor,  a s  (p'+ 6 ) should 

perhaps be employed. For simplici ty   herein  such a ref inement  is not  con- 

s idered .   In   consequence   s l igh t   e r rors   a re   in t roduced   which   show  up   pr i -  

m a r i l y  as  slightly  high  calculated  values of E for   uni-direct ional ly   re in-  

forced  ( in   the  1-direct ion)   composi tes .   Inasmuch as this  E is the   mos t  

easi ly   calculated of a l l   the   constants ,   v ia   the  rule  of mixtures ,  so  i t   can 

be  readi ly   corrected,  i f  desired,   and  since  the  other  values of s t i f fnesses  

appear   accura te ly   ca lcu la ted  (t570) with  one  for  direct   and  for  Poisson 

s t ra ins ,   only o n e p   i s   u s e d   i n   t h e  following  development. 

1 

1 

- /3 
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,. , . .. . . . .. . - .. . ... .. .. , . .. . ". . ." ._ ." 

(The  use of a s ingle   t ransverse   e f fec t iveness   fac tor   a l so   a f fec ts   the  

values  of Poisson ' s   ra t ios   ca lcu la ted   by   th i s   ana lys i s .  It will  be  shown 

later   that   expressions  may  be  der ived  for   tbe  adjustment  of thef l -value 

for a more   p rec ise   descr ip t ion  of the   t ransverse   e f fec t iveness .   For   mos t  

purposes ,   however ,   such a n  adjustments   appears   unwarranted.  ) 

In order   to   evaluate   the  s t ra in   energy as given  in  Equation (35)  ex- 

p re s s ions   a r e   r equ i r ed   fo r  € 4 # e tc .   i n   t e rms  of the  imposed 9' q 
distor t ions 6 ,  Q andC . These   expres s ions   a r e :  

1 2 *  3 

(1) The  s t ra in   a long a skew  fi lament 

(2)  The   s t ra in   perpendicular   to  a skew  filament  and  in  the  plane of 

the  filament  and  the  1-axis 

(3 )  The  s t ra in   perpendicular   to  6 and f 
9 83 
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Simi la r   exp res s ions   can  be wr i t ten  for the  orthogonal  shearing 

s t r a i n s  as: 

Substituting  Equations ( 3 6  ) - ( 41 ) inEquat ion ( 3 3 ) ,  integrating  and 

simplifying,  yields - 
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7 

J 
10 2 



(42) 
Cont ' d .  



Differentiating  successively  with  respect  to 6 , f , and f , and 
1 2  3 

collecting  the  factors of each of these  strains for each  partial  derivative 

yields  the  desired  elastic  constants, as follows: 

a s  beyore 
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and 

f J 



r -7 

c 

I .  



The  e las t ic   constants   for   shear ing  are   found  in  a similar fashion 

to those  for  stretching.  Shears Y Y , and 1 a re   imposed  

and  the  strain  energy is evaluated as  

12 ' 2 3  13 

4 b 3  

vi= 2 ~ - j b ( + g * q 4 + ? ~  
0 0  0 
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In ( 49 ) n = 1, 2 ,  3 ;  and 

1 



Substituting ( 50 ) - ( 5 5  ) in ( 4 9  ), carrying  out  the  integrations 

and  differentiations,  etc.  yields 

110 
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Evaluation of fl  ' s  - Equations  relating  the  st iffnesses of uni-directionally 
I 

reinforced  composites  to  the  effectiveness  coefficients 13 , f ', and p m a y  be 

readi ly   der ived as  spec ia l   ca ses  of the  general   equations  developed  in  the 

preceding  section.  For  the  three-dimensional  case,   with  the Poisson's ra t io  

of the  f i laments 3 not  equal  to  those of the  binder ,   these  equat ions  are:  

Y 

f 
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where 
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vf = volume  f ract ion of f i laments  

9 = Poi s son ' s   r a t io  of f i l amcnts  

c/ro = shear   s t i f fncss  of binder  having  uni-directional  round  holes,  
in  the  plane of the  holes 

= shear   s t i f fness  of binder  having  uni-directional  round  holes,  
G230 t ransverse   to   the   ho les  

Other symbol s  as before.  

I n  essence  equat ions (59)  - (64)  define  factors ( p )  for   t ransverse  effect ive-  

ness for   use  in   mult i -direct ional   re inforcement   pat terns  - i n   t e r m s  of uni- 

directional  reinforcement.   Accordingly,   any  available  data on the   t ransverse 

efKectivcness of unidirect ional   f i lamentary  re inforcement  m a y  be  employed  via 

these  equations,   and  those of the  preceding  section  for  multi-directional  con- 

figurations.  

In order   to   ob ta in   va lues  of the 13 I s  for   use  in   the  present   evaluat ions of 

approaches  to   improvements   in   propert ies ,   the   upper   bounds of the  e las t ic  

constant   analysis  of Reference 6 were  used  to   yield  values  of . Typical  

resu l t s   a re   p lo t ted   in   F igure  33. 

P 

From  Equa t ions  (59)-(64) above  the  related  equations of Ref. 6, and  in 

Figure  33the  following  characterist ics of the ' s  are   ev ident :  P 



(1) The  values  of E., E:, and/B_: are independent of the  f i lament 

properties;   depends  only  upon yd , and/2.andfledepend  upon Vb 
I 

p: 
and 4b. 

#t 
( 2 )  Values of f i ,  re', andf' a r e  not great ly   different   one  f rom 

another  (c.  f .  R e f . 4  in  which  was  suggested  to  be  approxi- 

mately 817 ). That is, the  t ransverse  effect ivenesses  as  

represented  by  the13  -values   are   s l ight ly  - but  not  substantially - 

PI 
P 

different  for  stretching  and  shearing. 

Values   ofP 's   calculated  using  the  upper   bounds of Reference 6 will  be 

employed  in   the  fol lowing  sect ion  to   measure  the  meri ts  of var ious  re in-  

forcement  configurations.  



Evaluations of Various  Reinforcement  Configurations 

In  order   to   i l lustrate   the  appl icat ion of the  equations  derived in the  fore-  

going  sections to specific  configurations of f ibrous  re inforcement ,  a number 

of examples  will  be  evaluated, as  follows: 

(1) Elast ic   constant   for   uni-direct ional   and  for   s imple  2-dimensional  

reinforcement  configurations  will   be  computed by  the  three- 

dimensional  analysis  and  compared  with  previous  "laminate" 

analyses   to   indicate   the  accuracy  obtainable .  

( 2 )  Uni-direct ional   t r iangular   cross-sect ion  f i laments   wil l   be  

considered.  

( 3 )  Orthogonal   e l l ipt ical   f i laments   a l igned  in   the 1-  and   2-   d i rec t ions  

and  having  all   the  minor  axes of the  e l l ipt ical   cross-sect ions  in  

the  3-direction  will  be  evaluated. 

(4) Three-dimensional   re inforcement   pat terns   wil l   be   evaluated.  

Two-Dimensional  Uni-Directional  Reinforcement - The  ini t ia l   appl icat ion 
~~ 

of the  equations  derived  in  the  previous  section  that   will   be  reported  covers 

two-dimensional   re inforcement   in   var ious  configurat ions,   for   comparisons 

with  previous  results  obtained  for  quasi-homogeneous  laminate  constructions.  

F i r s t   s imple ,   un i -d i rec t iona l   re inforcement   wi l l   be   cons idered   to   show  the  

magnitudes of poss ib le   d i f fe rences   f rom  o ther   methods  of calculation  intro- 

duced  by  the  approximations  associated  with  the  t ransverse  - factors  of the P 



present   analysis .   Also  possible   improvements   associated  with  ref ined 

t ransverse  factors   wil l   be   discussed.   Second,   re inforcements   a t   angles  

of t e degrees  to  the  1-direction,  orthogonal  f i laments  in  the 1- and 2-  

directions,   and  the 2 -dimensionally  - isotropic  ( t30 , 90 ) del ta   re in-  

- 
0 0  

- 

forcement   pat tern  wil l   be   evaluated  and  compared  to   previous  calcu-  

lations.   The  reduced  elastic  constant  equations  derived  from  the  general  

equations - that   apply  to   these  four   re inforcement   pat terns   are   given  in  

Tables  6 - 9 -  

For  uni-direct ional   re inforcement   the  present   analysis   natural ly   forces  

agreement   in   calculated  e las t ic   constants   with  other   analyses   for   those 

constants  which are direct   funct ions of the  -values if  the  -values  them- 

2' 3' 12' G23' 

P f 
s e l v e s   a r e   b a s e d  on  the  other  analyses.   Thus  values of E E G 

and G found  from  the  equations of Table  1 must   agree  with  the  corresponding 

values   f rom  whatever   source  was  used  to   determine  the . Values of the 

13 

P I s  
stiffness  along  the  reinforcement  direction E and of the   th ree   Poisson ' s  

r a t io s  3 I ? ~ ~ ,  and $1, however,   do  not  follow  this  forced  correspondence. 

1' 

2 1' 

General ly  the values  of E ca lcu la ted   f rom  Table  1 are h igher   than   f rom  o ther  

approaches  (or   the  rule  of mixtures) ,   and   the   Poisson ' s   ra t io   va lues  are  

lower.   Typical   d i f ferences  are   plot ted  in   Figure 34.  

1 

That  E for   uni-direct ional   f i laments   in   the  1-direct ion  should  correspond 

to  the  "rule-of-mixtures"  value  (see  Fig.  3 4 )  has been  general ly   accepted  and 

indeed  such  correspondence  appears  conceptually  satisfactory.   The  physical  

1 
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concept of a "rule-of-mixtures"   applying  to   the  Poisson 's   ra t io  3 , 
21 

however,   is   perhaps  not as satisfying,  nor is i t   supported  by  other 

analyses .   The  fact   that   the   Hashin-Rosen  values   on  the  Figure  are  so 

close  to  the  "rule-of-mixtures"  l ine,   for  example,   is   just  a coincidence 

for   this   par t icular   combinat ion of consti tuents;   for  epoxy  f i laments  in 

glass   binder ,   the   corresponding  Hashin-Rosen  curve  for  3 i s   essent ia l ly  
21 

identical  to  that   p lot ted  for  p =? up,,c1' bound. In  any  event,   the  major 

d i screpancy   appears  in  the  calculation of E via   the  present   analysis  

( c i r ca  10% maximum  difference  between  the  calculation  and  the  "rule-of- 

mixtures"   value  for   uni-direct ional   re inforcement;  as will  be  shown,  for 

1 

al l   o ther   re inforcement   pat terns   the  present   analysis  is in   c loser   agree-  

ment  with  accepted  calculations  for E as well  F S  the  other  st iffnesses).  
1 

Refined  Equations  for  Uni-directional  Reinforcement. - A likely  source 

of the  above  discrepancy  is  the  use of a single  value of t o  apply  to  the 

t ransverse  effect iveness   for   s t ra ins   introduced  by  Poisson 's   ra t io   effects ,  

as  noted  in  the  section  describing  the  derivation of the  equations  for  elas- 

t ic  constants.  A more  ref ined  analysis   could  be  developed,   for   example,  

which  would resul t   in   equat ions of the  nature  given  in  Table 14 for  uni- 

direct ional   re inforcement .   The  evaluat ion of the  addi t ional   parameters  

in a s e t  of equations  like  those  in  Table 14 can  be  made  through  the  imposi-  

tion of additional  conditions  to  be  simultaneously  satisfied,   such as, that 

P 



(because of the   t ransverse   i so t ropy  of uni-directional  reinforcement) 

and  that  

E = E  v t E  ( 1 - v )  
1 f f  b f 

o r  by  the  direct   evaluation of A1,   AZ,  e tc .   i n   t e rms  of the  Hashin-Rosen 

constants as  by  the  equations of Table  15. 

For   mos t   purposes   re f ined   equat ions  of the  nature  of those i n  Table  14 

do  not  appear  justif ied.  A s  will   be  shown  the  accuracy of the   s impler  

equat ions  developed  here   should be adequate   for   most   re inforcement   pat-  

t e rns ,  as  judged  by  the  following  comparisons  with  available,  2-dimensional 

laminate   analyses .  
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Two-Dimensional.   Multi-Directional  Reinforcement - If the   re in-  

forc ing   f i l aments   a re   d i sposed   a t   r igh t   angles   to   each   o ther   bu t  still 

essent ia l ly   in  a single  planc,   two  possible  approaches  suggcst  themselves 

for  the  calculation of the  elastic  constants  using  the  equations  in  Table 7. 

In the   f i r s t   approach   the@  -va lues   cor responding   to   the   to ta l   vo lume  con-  

centrat ion of f i laments   i s  used, a s  if the  filaments  were  packed  in  individual, 

uni-directionally  reinforced  laminae  each of which  had  the  volume  fraction 

packing of the  laminate as  a whole. In the  second  approach  the  (3-values  for 

the  lesser   volume  f ract ions  corresponding  to   the  f ract ion of f i laments   in  

each   d i rec t ion   a re   used ,  as  if the  f i laments   were  t ruly  mixed  in  a given 

plane.   Thus  two  s l ight ly   different   resul ts   are   obtainable   for   the  e las t ic  

constants,  as  shown  in  Figure 35. 

A S  shown  in  Figure 35 :he  values of E calculated by the  present   ana lys i s  
1 

are   s l ight ly   greater   than  those  found  f rom  convent ional   laminate   analysis .  

The  differences  are   less   than  for   the  uni-direct ional   case,   decreasing  f rom 

the  maximum  discrepancy  a t  070 f i laments   in   the  2-direct ion  to   zero  difference 

at 10070 t ransverse   re inforcement .   (The   case   chosen   for   compar ison  - that  

is ,  5070 volume  fraction  with  very  different  f i lament  and  binder  materials,was 

specifically  selected  to  bring  out  the  differences  in  results  associated  with  the 

P -value  approximations.   For   f i laments   having  Poisson 's   ra t ios   and  s t i f fnesses  

less   d i f fe ren t   f rom  those  of the  binder  than  this  example,   and  for  higher  volume 

f rac t ions  of reinforcement,   the  Present  analyses m a y  be  expected  to   correspond 



more  c losely  to   laminate   analyses . )  

For   re inforcements   running  in   one  plane at angles  of +e to . the  1- - 
direct ion  the  correspondence  between  the  present   and  laminate   analyses  

is   s imilar   to   that   for   or thogonal   f i laments .   Thus as shown  in  Figure 36 

the   resu l t s  of present   and  past   analyses   rapidly  approach  each  other  as  

8 diverges   f rom  zero   degrees .  

One more  comparison  wil l   be   made of two-dimensional  calculations 

before  passing  to  the  investigations of three-dimensional   effects   that   the  

new analysis   faci l i ta tes .   This  last comparison  (Figure 37) shows  values 

of E for  the t 30 & 90' configuration  that  provides  in-plane  isotropy. 

Agreement   between  laminate   and  present   analysis  is shown  generally 

sat isfactory.  An addi t ional   comfort ing  resul t  not  shown  on  the  figure,  or 

obvious  from  the  pertinent  equations  (Table 9 ), is that,  a s  i t   should,   for 

the present   analysis  of this  configuration 

0 

1 - 

G =  

at least   to   four   decimal   places .  

Tr iangular   F i laments  - As a first application of the  three-dimensional 

analysis  to  the  evaluation of reinforcements  which  affect   the  st iffnesses  in 

all direct ions,   le t   us   consider   f i laments   having  an  equi la teral- t r iangle   cross-  

section.  This  shape is of especial   in terest   because,   wi th   ideal   packing it 

permits   s t ra ight- l ine  binder   e lements   among  the  f i laments   (Figure 38). 



In the  limit,  the  configuration  shown  in  Figure 38 is akin  to   those 

for  which  the  waffle-type  analysis  was  originated.  That is, the   mater ia l  

bchtween the  tr iangular  f i laments  is   effective  along  the  straight-l ine  elements 

as  well as t ransverse  to   them;  the  components  of stiffnesses  both  along  and 

t ransverse  to   each  binder   e lement   thus  contr ibute  to the  overal l   s t i f fness ,  

a s  descr ibed by  the  equations of Table  1Q 

The  ra t io   of   t ransverse  s t i f fnesses   produced  by  s t ra ight- l ine  cont inuous 

binder   e lements  of F igure   %(as   represented  by  the  equations of Table 1 0 )  to 

the  t ransverse  s t i f fnesses  of the  usual  discontinuous  binder  are  plotted  in 

Figure 3 as represent ing   t r iangular   g lass   f i l aments  in  epoxy.  More  precisely, 

the  t ransverse  s t i f fnesses  of the  two  models  shown  in  Figurc, 38 a re   t hose  c o m -  

pared in F igure  39. That   is   the   s t i f fness  of a composite of epoxy  filaments 

or iented in a delta  configuration  in a g l a s s   ma t r ix  is compared  with  that  of 

a d ispers ion  of rounds  transverse  to  the  direction  in  which  the  st iffness is 

calculated.   The  st iffness of the  oriented  epoxy  f i laments  was  evaluated v i a  

the  equations of Table  6 wi the-va lues   cor responding   to   the   random-ar ray  

upper  bounds of Ref. 6. The   t ransverse   s t i f fness  of the  dispersed  rounds 

was  found  directly as the  random-array  upper   bounds of Ref. 6. Accordingly 

the  difference  in  st iffness  between  the two models  is just   that   ar is ing  a long 

the  oriented,  straight-l ine  elements  found  among  the  equilateral   tr iangles.  

Although  the  gains  in  transverse  st iffness  for  the  tr iangular  f i laments 

shown  in  Figure  39are  only 20-2570 in  the  volume  fraction  range of g r e a t e s t  
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i n t e re s t  (Yp(0.  3 3 ) ,  two  factors  tend  to  multiply  the  importance of this  

improvement.  First the  gain  is   b i -direct ional  - i . e .  if the   t r iangular  

f i laments  a r e  oriented  in  the  1-direction  both E and E a r e  equally  en- 

b 

2 3 

hanced.  Second,  the  fact   that   the  percent  gain i s  grea te r   a t   the   h igher  

volume  f ract ions of binder   suggest   that  as  the   b inder   p roper t ies   become 

more  significant  (hence  for  better  binders  than  epoxy)  the  improvement 

m a y  be  more  significant.   The  value of enhancement of E as  well  as E 

wil l   be   discussed  fur ther   in   other   sect ions of th i s   repor t .  

3 2 

Ell ipt ical   Fi laments  - It   was  f irst   shown  in  Ref.  2 and  has   been now 

thoroughly  confirmed  by  the  data  herein  that   el l iptical   f i laments  can  sub- 

s tan t ia l ly   increase   the   t ransverse   p roper t ies   in   the   d i rec t ion  of the  ell ipse 

major   ax is .  In o rde r   t o   de t e rmine   j u s t  how  valuable  such  an  increase  is ,  

however, a quant i ta t ive  s tudy  is   required of var ious   approaches   which   a re  

capable of affecting  the same increase.   Accordingly,  :he waffle-type 

analysis   is   here   appl ied  to   the  evaluat ion of e l l ipt ical   f i laments .  

As a f i r s t   example ,   l e t   us   compare   the   Froper t ies  of round  and  ell iptical-  

f i lament  reinforced  composites  having  comparable  amounts of orthogonal 

reinforcement  to  provide biaxial s t i f fness .   The  comparison is made  in 

F igure  40. 
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In F igu re  40 the  stretching  st iffness  in  the  1-direction (E ) is plotted 
1 

against   the  percentage of re inforcement   or iented  t ransversely.   In  all 

cases  the  total   amount of re inforcement   ( i .   e .   the   sum of the  reinforce- 

ments  in  the  two  directions) is held  constant   a t  5070 by  volume of the 

composite.  The  values  plotted  were  calculated  from  the  equations of 

Table 11 and 7 for  
E = 72.45  GN/m 2 

00,  500,000 psi,) v = 0.2  
f 

2 f 
Eb = 3 . 4 5  GN/m 

(500, 000 ps i , )  v = 0 .  35 b 

that is for   p roper t ies   representa t ive  of E-glass  f i laments  in  epoxy  binder.  

Two  curves  are  given  for  both  the  round  and  ell iptical   f i laments,  

representing  the  two  possible P -values as  d iscussed  for Figure  35. Dif- 

ferences  between  the  upper   and  lower  curves   are   small ,  as  can  be  seen. 

T h e  P -values  for  the  round  f i laments  are  those  plotted i n  F igu re  3 3 .  Those  

fo r  t h e  e l l ipses   were  calculated  to   make E = 2E  for  100% of the  re inforce-  

ment  in  the  2-direction as  appropriate   for   4’ to  1 aspec t   ra t io   e l l ipses   a t  

50 volume  percent  reinforcement.  

1 1 

With  the  curves of F igure  40, i t  is possible   to   compare  direct ly   the 

relative  effectiveness of the  rounds  and  the  e l l ipses   for   providing a given 

Lransverse   s t i f fness .   For   example ,   suppose   tha t   t ransverse   s t i f fnesses  

ranging  upward  from  that  for  the  uni-directional  el l ipses  is   to  be  obtained 

by  the  orthogonal  rounds. To achieve  these  s t i f fnesses   some of the  longi- 

tudinal  (1-direction)  round  filaments  must  be  oriented  in  the  2-direction; 



the  st iffness  in  the  1-direction is thus  reduced,   and  the  reduct ion  is   sub-  

stantial ,  - as  shown  by  the  "equivalent  rounds"  curve  on  Figure 40. 

Each  point  on  the  "equivalent  rounds"  curve  of  Figure 40 has  the 

same  t ransverse   (2-d i rec t ion)   s t i f fness  as  the  e l l ipt ical   f i laments   a t   the  

same  va lue  of the  abscissa .   Thus,   for   example,   wi th  2 0 %  t r ansve r se  

reinforcement   the  e l l ipses   provide  an E Of 35, 2 GN/m2  approximately,   whereas  
1 

the  equivalent  rounds (i. e.   the  rounds  giving  the  same E (= 23. 5 G N ! ~ ~ )  as  this 

configuration of ellipses)  would  provide  only  the E given  by  the  "equiv" 

2 

1 

cu rve   a t   t h i s   absc i s sa  (200/0) o r  26. 9 C N / m 2 a  

While  comparisons  l ike  those of F igu re  40 suggest   that ,   for   glass-reinforced 

epoxy,-if   the  application  requires  transverse  st iffness of one-half   or  more of 

the  axial   s t i f fness , -shaped  f i laments   l ike 4 to 1 el l ipses   may  provide  substant ia l  

s t ructural   improvement .  If advanced  f i laments   l ike  boron  are   considered,   how- 

eve r ,  a different   resul t  is obtained. 

In F igu re  41, the   curves  of F igu re  40 a re   r ep lo t t ed   fo r   bo ron   i n s t ead  of 

g lass   re inforcement .  With  the  high  ratio of longi tudinal   to   t ransverse  s t i f f -  

ness  provided  by  the  boron,  the  factor 2 improvement  associated  with  the 

el l ipt ical   geometry  for   unidirect ional   re inforcement  is near ly  as readi ly  

attained  with a few  transverse  round  f i laments.   Hence,  the  "equivalent 

round"  curve is only  sl ightly  below  the  curve  for  the  ell ipses.  

A similar r e s u l t  is obtainable  for  changes  in  binder  properties.   Thus 
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the  use of a hypothetical   f i l led  binder  (properties  l ike  those of the  a lumina-  

filled  epoxy of Reference 2 were  used  for   calculat ion)   can raise the  overal l  

st iffness  level (i.e. the  longitudinal as well  as  the   t ransverse   s t i f fnesses)  

of a glass-reinforced  plast ic  a s  shown  in  Figure 42. Thus  the  binder  im- 

provement   is   more  effect ive  than  the  f i lamentary  e l l ipses ,   for   example,  

for  they  enhance  only  the  transverse  properties.  If, however,   the  reinforce- 

ment   were  boron,   the   improvement   ar is ing  f rom  the  s t i f fer   b inder   would  be 

a much  smaller   percentage of the  overal l   s t i f fnesses .  With boron,  then, 

once  again  t ransverse  s t i f fness   propert ies   could  be  a t ta ined  near ly  as  

readily  with a few  t ransverse   f i l aments  as  with a binder  twice as  stiff a s  

epoxy. 

Reviewing  the  implications of F igu res  40 to 4 2  one  concludes  that  the 

mer i t  of the  ell iptical   shape  depends  on  the  associated  conditions.  It i s  

perhaps  most  valuable  when  the  ratio of E / E  is not ex t r eme  - as ex t r eme  

a s  boron  in  epoxy,  for  example. 

f b  

An interest ing  future   possibi l i ty   might   be a diamond-shaped  f i lament 

(with  sl ightly  rounded  corners)  which  could  combine  most of the  a t t ract ive 

fea tures  of the  equilateral   tr iangles  with  those of the  ell ipse.  

Three-Dimensional   Reinforcement  - Equat ions  for   the  e las t ic   constants  

for  composites  having  reinforcing  f i laments  in  three  orthogonal  directions 

and  filaments  making  equal  angles (t - 0 )  to  each of three  or thogonal   direct ions 



are   g iven   in   Tables   12   and   13   respec t ive ly .  

The  use of th ree-d imens iona l   re inforcement   ra i ses  new questions 

about  the  relative  desirabil i ty of var ious  re inforcement   configurat ions.  

Most of these  questions  have  not  yet  been  answered.  Hence,  here we 

shall  only  indicate  some of the  problem  areas  to  which  equations  l ike 

those of Tables  12 and  13  provide  access .  

(1) What is the  proper   balance  for   opt imum  reinforcement  

in   the   var ious   d i rec t ions?   S t rength   c r i te r ia   (Ref .   11)  

suggest   the   desirabi l i ty  of three-direct ional   re inforce-  

ment,   but  any  sacrifice  in  f i laments  in  one  direction 

to   provide  f i laments   for   another   direct ion  produces a 

compound loss of propert ies   in   the  f i rs t   d i rect ion.   For  

example,   consider  the  following  three  glass  f i lament- 

reinforced  epoxy  composites:  

(a) 60 volume  percent  f i laments  in  the  1-direction 

(b) 50 volume  percent  f i laments  in  the  1-direction, 

10 volume  percent  f i laments  in  the  2-direction - 

(c )  40 volume  percent  f i laments  in  the  1-direction 

10 volume  percent  f i laments  in  the  2-direction 

10 volume  percent   f i laments   in   the  3-direct ion 

Elas t ic   cons tan ts   for   these   conf igura t ions   a re  
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E l  = 48.8 GN/m2 E2 = 13.4 GN/m2 E = 13.4 GN/m2. 3 
(7,070,000  psi)   (1 ,940,000  psi)   (1   ,940,000  psi)  

(a 1 
G12 = 4.42 GN/m2 G23 = 5.01 GN/m2 G.13 = 4.42 GN/m2 

(640,000  psi)  (726,000  psi)  (640,000  psi)  

E l  = 42.2 GN/m2 E2 = 18.1  GN / m  2 E3 = 11.2 GN / m  2 

(6 ,120 ,000   ps i )  (2  , 630,000  psi)   (1 ,620,000  psi)  
. .  

G N  2 
G12=  3 .71 / m  G23 = 4.08 GN/m2 q 3  = 3.68 GN/m2 

(537,000  psi)   (592,000  psi)   (534,000  psi)  

GN E = 16.6 / m  E l  = 3 5 . 5  /m 
2 

G N  2 E3 = 16.6 GN / m  2 

(5 ,140 ,000   ps i )   (2 ,410 ,000   ps i )  (2,410,000 psi)  
(c 1 

GI2 = 3.26 GN/m2 G23 - - 3.48 GN/m2 G1 3 = 3.26 GN/m2 

(472,000  psi)   (504,000  psi)   (472,000  psi)  

The  reductions  in G f rom (a) to  (c),   and  in E f r o m  (a) to  (b) 

are   associated  with  the  losses   in   t ransverse  propert ies   (cf . ,   the  

two curve of F igure  35 associated  with  the  reduction  in  f i lament 

packing  density  in  the 1 - direction.  Evidently a balance  must be 

12 3 

struck  between  multi-directional  f i laments  and  multi-directional 

reinforcing by t ransverse   f i l ament   e f fec t iveness .  

( 2 )  Are  skew  f i laments   more  effect ive  than  or thogonal   f i laments? 

If one  res t r ic ts   oneself   ( to   begin  with)   to   the  s imple  combinat ion of pa i r s  

of skewed  fi laments  indicated  in  Fig.   43,   for  which  the  equations of Table  13 

apply,   one  f inds,   for  example,   that  if all pa i r s   make  30° angles  with  their  



respect ive  axes ,   and  the  volume  f ract ions  are   40%  in   the 1 -d i r ec t ion ,  

and 10% in  the  other  directions . 

E l  = 12.4  GN/m2 = 10.2  GN/m2 E 3  = 7.25  GN/m2 

(1 ,790 ,000   ps i )   (1 ,480 ,000   ps i )  (1 ,050,000 ps i )  

G12 = 4.69 GN/m2 G23 = 4.80 GN/m2 q 3  8.49 GN/m2 

(680,000  psi)   (696,000  psi)   (1 ,230,000  psi)  

By comparison  with  (c)  above,  i t  is evident  that   the  skewing  has  decreased 

the E's and  increased  the GIs. Here  the  s t re tching  s t i f fnesses   in   the  three 

direct ions  are   more  near ly   a l ike;   wi th   just   the   or thogonal   f i laments   the 

shear ing  s t i f fnesses   were  c loser   together .   The  differences of this  nature 

lead  immediately  to  questions  like  the  following: 

( 3 )  How do  the  various  st iffnesses  change  with  angular  orientation,  and 

what is the  minimum  number of re inforcement   direct ions  required 

for   i so t ropy?  

In order   to   i l lus t ra te   some of the  possibilities,  Figs.  44 - 48 w e r e   p r e -  

pared.  In F igs .  44 - 47,  the  variations  in  stretching  and  shearing  st iffnesses 

with  angular  orientation of r e in fo rcemen t   a r e   p re sen ted   fo r  a constant  volume 

fract ion of total   reinforcement of 0.6. In  general as the  re inforcements  

are  changed  to  enhance  the  stretching  st iffness,   the  shearing  st iffness is 

decreased  and  vice  versa .  In F i g s .  46 and 47, however ,   there  is evidence 

that  the  correspondence  between  the two  types of s t i f fnesses  is not a s imple 

one.  Thus  for 8 a 45O in   F ig .  46, the  s t re tching  s t i f fnesses   in   the 1 -,  2 - 
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and 3 - direct ions  are   about   equal .   The  corresponding  shear ing  s t i f fnesses  

plotted on F i g .   4 7 ,  on the   o ther   hand ,   a re   subs tan t ia l ly   d i f fe ren t   a t   th i s  

angle.   Hence,  obviously,   equality of s t re tch ing   s t i f fness   in  3 orthogonal 

directions  does  not  consti tute  isotropy. 

One  cr i ter ion for isotropy is that  

E 
G =  2 ( 1  t 3 )  - (72) 

E 

G 
A plot of the  ra t io  2-1 for   the  re inforcements  of F igs .  44 and 

45, and  for  two other   volume  f ract ions is made  in   Fig.  48. F o r  all volume 

f rac t ions ,   the   ra t io  is unity a t & =  30° o r  60°. Accordingly,   i t   appears  

tha t   s ix   f i l amentary   d i rec t ions  ( t 30° to   three  or thogonal   axes)   may  be 

suff ic ient   to   provide  an  essent ia l ly   isotropic   re inforcement   pat tern.  

- 

Concluding  Remarks  on  Three-Dimensional  Reinforcement 

The  waffle-l ike  analysis  for  elastic  properties  developed  in  this  section 

is suff ic ient ly   versat i le   to   encompass  most   geometr ical   effects  of composi te  

reinforcement.  While  written  only  in  approximate  form,  the  fact  that  its 

resul ts   correlate   reasonably  with  other   analyses   when  two-dimensional  

problems  a re   cons idered   lends   conf idence   to   the   be l ie f   tha t  it should  be 

adequate   for   the  three-dimensional   domain.   Guidel ines   for   improving  the 

accu racy  of approximation, as by  the  employment of m o r e   p r e c i s e l y   d e t e r -  

mined  t ransverse  effect iveness   factors   fol low  s t ra ight   forwardly  f rom  the 



same  s tar t ing  point   used  in   the  present   der ivat ions.   Indeed  there   should 

be  no  major  impediment  to  the  development of an  essent ia l ly   r igorous 

general   analysis  analogous  to  that   already  completed.   The  desirabil i ty 

of such  a der ivat ion  can  perhaps  be  bet ter   determined  af ter   the   present  

results  have  been  capitalized upon  to  explore  the  three-dimensional  rein- 

forcement   reg ime,   de te rmine  its a r e a s  of pr ime  in te res t ,   and   re la te  

these  to  accompanying  studies of s t r eng th   cha rac t e r i s t i c s .  



EXPERIMENTAL  EVALUATIONS O F  TRANSVERSE  EFFECTIVENESSES  OF 
FILAMENTS  OF VARIOUS CROSS-SECTIONS 

The  use of f i l amentary   c ross -sec t ions   o ther   than   rounds   to   improve  

proper t ies   t ransverse   to   the   f i l aments  w a s  proposed  in   Reference 2 and 

progress   has   been   made  by DeBell   and  Richardson  since  then  in  the  deve- 

lopment of techniques  required  to  make  shaped-filamentary  composites 

feasible.  Quantitative  evaluations of the  meri ts  of shaped  f i laments ,  

however,   have  st i l l   been  inadequate  to  direct   this  development  into  most 

f rui t ful   areas .   Accordingly,   both  experiment   and  analysis   has   been  con-  

ducted  on  the  more  a t t ract ive  cross-sect ional   geometr ies   proposed  for  

f i laments .   The  resul ts  of the  experimental   phases of these  investigations,  

comprising  photo-elastic  studies  and  mechanical  tests of e l l ipses   and  

hol low  rounds,   are   reported  herewith.  

Evaluations of El l ipt ical   Fi laments  

In contrast   to  the  relatively small inc reases  found for   t r iangular   f i l aments  

in  the  preceding  section,  el l iptical   f i laments  have  already  demonstrated  (Ref.  2 )  

f ac to r s  of two improvements   in   t ransverse   s t i f fness   for  a spec i f ic   aspec t   ra t io  

ell ipse  in 50 volume  percent   binder  (E ;u" 21). Accordingly,   an  extensive 

experimental   s tudy of the  t ransverse  effect ivenesses  of e l l ipses   compared  to 

rounds  has   been  made.   The  f indings  are   reported  for thwith.  

f /Eb 

T e s t s  of Transverse   S t i f fness  - A  s e r i e s  of models   (F igure  49) of l l largell  

( typ ica l   d iamet ra l   d imens ions  5 mm) inclusions  was  made  and  tes ted  in  



compression  (Figure  50)  with  systematic  variations  in  volume  fractions 

and  inclusion  shapes.   St i f fnesses   were  measured  in   both  t ransverse 

direct ions  using  Tuckerman  opt ical   s t ra in   gages,   wi th   the  gage  length 

adjusted  tc   span  even  mult iples  of inclusions  and  associated  binder.   The 

r e s u l t s  are presented   in   Table   16and  F igures  51-54. 

Not surpr i s ing   a re   the   resu l t s   shown  in   F igure  51. The  solid  rounds 

are in fair agreement  with  the  predictions of Hashin  and  Rosen  (Reference 6) 

and  the  ell ipses  provide  substantial   enhancement of t ransverse  s t i f fness   in  

the  direction of their   major   axes .  

More   surpr i s ing  are the  results  shown  in  Figure 52. Here   the   t rans-  

verse   s t i f fnesses   in   the   d i rec t ion  of the  ell ipse  minor axes a re   a l so   shown  

greater  than  the  rounds.   Apparently,   the  round is one of the  least  effective 

shapes  for   providing  t ransverse  s t i f fness .  

For   ho l low  rounds   (F igures  5334) and  for  holes,   Hashin-Rosen  upper 

bounds are in  better agreement .with  the  tes t   data   than  the  previously  used 

mean  value  (Reference 1). Here  again  e l l ipses  are befter  in  the  direction 

of the i r   ma jo r  axes, but   for   holes   the  s t i f fnesses   in   the  direct ion of the 

minor  axes are much less than  for   rounds.  

Fo r   comple t eness   t he   measu red   va lues  of Poisson 's   ra t io   for   the  speci-  

m e n s  are presented  in   Figure 55. 



Discussion of Tes t   Resu l t s  - The  most   s ign i f icant   resu l t s  of the  foregoing 

tests  appear  to  be  the  following: 

1. For   sol id   round  inclusions  the  Hashin-Rosen  bounds  predict   the  

t ransverse  s t i f fnesses   with  reasonable   accuracy.  

2 .  For  hol low  rounds  the  Hashin-Rosen  upper   bounds  are  a b e t t e r   m e a s u r e  

of the   t ransversc   s t i f fnesses   than   the   average  of the  upper  and  lower 

bounds.  Thus  evaluations  (Ref. 1 )  of hollow  filaments  which  used  the 

average of the  bounds  and  concluded  that  the  hollow  was  disappointing 

because of i ts   poor   t ransverse  propert ies ,   unduly  devalue  the  hol low 

filament. 

3 .  Li t t le   re la t ionship   ex is t s   be tween  the   t ransverse   e f fec t iveness  of binder  

between  holes  and  binder  between  solid  inclusions.  This  fact,  amply 

demonstrated  by  the  very  low  effectiveness  in  the  direction of the  minor  

a x i s  of e l l ipt ical   holes   and  the  high  effect iveness   in   the  direct ion of the 

minor   ax is  of e l l ipt ical   sol ids ,   suggests   that   the  f i  values  of the  pre-  

ceding  section  should  not  be  evaluated  on  the basis of holes   in   the  binder .  

c 

4. El l ipses  are perhaps  bet ter   than  might   have  been  ant ic ipated  for   the 

enhancement of t ransverse   p roper t ies ,   because   they   increase   the   s t i f f -  

ness   in   the  direct ion of the  minor  axis (albeit  only  slightly) as wel l  as 

in  the  direction of the   major  axis. 



Photoelastic  Studies 

In   order   to   s tudy  fur ther   the  mechanics  of fi lament-binder  combina- 

t ions  an  addi t ional   ser ies  of models   s imi la r  to  those  tested as descr ibed 

in  the  preceding  section w a s  made  and  subjected  to  photoelastic  analysis 

at   the  Photolastic  Corporation.  Specimens  comprised  round  and  ell iptical  

holes   and  inclusions  a t   several   volume  f ract ions.   The  res in   used  was 

Photolastic  type  PS-2.  Inclusions  were  aluminum,  and  they  were  bonded 

in  place  with  Photolastic  type  PC-IC  cement.  Typical  fringe  patterns  are 

i l lustrated  in   Figures   56-58,   and  typical   resul ts  of the  reduction of data 

to   y ie ld   i soc l in ics   and   i sos ta t ics   a re   p resented   in   F igures  59 and 60. 

Resul ts  of Photoelastic  Studies - The  chief  result  of the  photoelastic  analysis 

is that  with  inclusions,   and  especially  with  high  volume  fractions of f i laments ,  

a nearly  uniform stress s ta te  is produced   for   t ransverse   loads ,  as i l lustrated 

in  the  lower,   r ight  sides of F i g u r e s  5 9  and 60. This   un i form  s t ress   s ta te  is 

consistent  with  the  high  transverse  effectivenesses  found  for  solid  inclusions 

in  the  previous  section  (effectivenesses  near  the  Hashin-Rosen  upper  bounds).  

Correspondingly  the  highly  non-uniform  state of stress found  for  holes  (the 

upper  halves of Figures   59  and 60)  and  the  associated  high  s t ress-concentra-  

t ion  factors  (Table 16) bear  out  the  finding  that  there is l i t t le  relation  be- 

tween  the  effectiveness of b inder   mater ia l   among  ho les   and   among  f i laments .  

The  ell ipses  loaded  along  their   major  axis  produce  an  even  more  uniform 

stress  state  than  the  round  inclusions.  



CONCLUDING R E M A R K S  

Several   s tudies   re la t ing  to   the  mechanics  of f i lament-reinforced  compo- 

si tes  have  been  reported  herein.  A prime  motivation  behind  these  studies 

der ives   f rom  cont inuing  invest igat ions of efficiency of composite  applications,  

because  as   noted  in   the  sect ion on shell   efficiency  such  investigations  emphasize 

the  importance of adequate  analysis of the  role  played  by  both  binder  and  rein- 

forcement  in  the  attainment of the  potentials of advanced  composites.   Thus  the 

ultimate  strength  in  both  tension  and  compression,  as  well  as  the  buckling 

resis tance  in   compression  have  been  shown  in   these  s tudies   to   be  profoundly 

influenced  by  both  f i lamentary  and  binder  material   properties.  

To  further  the  understanding of the  mechanics of re inforcement ,   an  

analysis  of  the  visco-elastic  response of composi tes   has   been  accomplished 

and  the  influence of the  viscous  effects  upon  the  individual  properties  has  been 

identified.   The  transverse  effectiveness of f i lamentary  re inforcement   has  

been  s tudied  experimental ly ,   both  mechanical ly   and  photoelast ical ly ,   and 

the   mer i t s  of tr iangular  and  ell iptically-shaped  f i laments  evaluated.  An 

analytical   procedure  has  been  developed  for  the  calculation of the  elastic 

constants   for   three-dimensional   re inforcement .  
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U 
i= ru 

Vehicle 

Redstone 

scout  

T hor 

Atlas 

Minuteman 

Titan I 

Titan I1 

Saturn V 

Nova 

TABLE 1. COMPRESSIVE LOADINGS FOR LAUNCH  VEHICLES 

Thrust ,  kN 
(lbs. ) 

347 
(78, 000) 

(86, 000) 

(170, 000) 

383 

756 

1730-375* 
(389,000-80, 000) 

756 
(170,000) 

(300, 000) 
1913 

(430, 000) 
33,360 

(7, p o o , o o o )  
11,200 

1334 

(25, 000, 000) 

Radius,  m. 
(in. ) 

0.889 
(35) 

0.4955 
(39) 
1.219 
(48) 

1.524 
(60) 

(35.5) 

(30) 

(30) 
5.08 
(200) 
12.19 
(480) 

0.9015 

1.524 

1. 524 

Thrus t  
Circumference x Radius 

K N / ~ Z  (psi)  

*Lower  value is that for sustainer   engine- in   this   case  perhaps  more  representat ive of the  design 
condition. 



TABLE 2. MECHANICAL PROPERTIES ASSIGNED T O  IDEALIZED  METALS FOR COMPARISON 
WJ.TH COMPOSITES 

Material  Density 
Mg/m3 
( P 4  

Steel 

Titanium 

w Aluminum 

Magnesium 
-Lithium 

Beryllium 

7.89 
(0.285) 

4.82 
(0. 174) 

2.80 
(0.100) 

1.34 
(0.0485) 

1.83 
(0.066) 

Young's  Modulus 
CN/m2 
(ksi)  

207 
(30, 000) 

103 
(15, 000) 

73.8 
(10,  700) 

42.75 
(6200) 

293 
(42, 500) 

Yield Stress Poisson's 
GN/& Rat io 

(ksi)  

2.07 
(300) 

0.25 

0.483  0.315 
(70) 

0.124 0.43 
(18) 

4.00 0.09 
(58) 



Hollow E -Glass 

Solid E -Glas s 

Hi-Modulus  Glass 

Asbestos 

Steel 

Beryll ium 

Boron 

Alumina 

Young's  Modulus 
GN/m2 
(ksi) 

72.45 
(10,  500) 
72.45 

(10,  500) 
110 

(16,000) 

(26, 500) 

(30,000) 

(40,000) 

(60,000) 

183 

20 7 

276 

414 

518 
(75,000) 

2.56 
(0.0914) 
2.56 

(0.0914) 
2.56 

(0.0914) 
2.44 

(0.087) 
7.9 

(0.283) 
1.85 

(0.066) 
2.32 

(0.083) 
4.0 

(0. 143) 

Poisson's Ratio 

0.20 

0.20 

0.20 

0.20 

0.25 

0.09 

0.20 

0.20 
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Table 5. Comparison of Elastic Moduli   Predicted  by  the  Methods of 

Pickett  (Ref. 10) with  those of Hashin/Rosen*  (Ref. 6 ) .  

Case  A: 

Ef 
6 = 10.008 x 10 psi 

E,, = 4.958 x 10 Yg ps i  

"f = 0.63 

Proper ty   Ref .  10  Value 
(case b 9 - p. 16) 

E1  6.4908 x 10 

4 

6 

21 
0.2428 

G12  '0.6926 x 10 
6 

6 

6 

1.5689 x 10 

0.6790 x 10 

K2 3 

G2 3 

C a s e  B: 

Vf = 0.20 

qb = 0.34 

Ref. 6 Value 

6.4913 x 10 

0.2439 

0.6886 x 10 

6 

6 

6 

6 

1.5598 x 10 

0.6870 x 10 

v = 0.8 
f 

Property  Ref.   10  Value 
(case c 2 - p. 17) 

8.1037 x 10 
6 

7/21 
0.2227 

G12 
- 

3f = 0;20 f 

db = 0.34 

Ref. 6 Value 

8.1074 x 10 

0.2228 

1.1958 x 10 

6 

6 

Random  a r r ay  results with G23 value being  the  average of upper  and lower 
bounds.  Other  bounds  coincident. 

F r o m   r u n   6 ,  p.  46. 
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K23 

G2 3 

v = 0 . 7  f 

El  

4 

G1 2 

2 1  

K2 3 

G2 3 

vr = 0.6 

E1 

-Jz 1 

G1 2 

K2 3 

G2 3 

vc = 0.5 

2.5628 x IO6 

6 1.2644 x 10 

(case c4 - p. 17) 

7.1596 x 10 

0.2350 

6 

1.8645 x 10 

0.8496 x 10 

6 

6 

(case c6 - p. 17) 

6.2101 x 10 

0.2482 

6 

1.4613 x 10 

0.6106 x IO6 

6 

2.4873 x 10 6 

6 1.1828 x 10 

7.1568 x 10 6 

0.2350 

0.8443 x 10 6 

6 

6 

1.8507 x 10 

0.8419 x 10 

6.2060 x 10 

0.2478 

0.6354 x 10 

1.4591 x 10 

0.6334 x lo6 

6 

6 

6 

(case  c8 - p. 17) 

5.2535 x 10 
6 

0.2615 

- 

5.2550 x 10 

0.2612 

0.4971 x 10 6 

6 



K2 3 
6 

G2 3 0.4631 x lo6 

1.1936 x 10 

Case  C: 

1.1938 x 10 

0.4924 x 10 

6 

6 

Ef = variable  

Eb = 0.2600 X 10 6 

vf = 0.63 

E c  = 0.2600 X 10 6 

= 0.30 f 

Jb = 0.30 

Property Ref. 10 Value 
(case  d 1 - p. 18) 

0.2600 x 10 6 

G12 

K23 

G2 3 

Ef = 0.5200 X 10 6 

E1 

.L/z 1 
G12 

K2 3 

G2 3 

0.3000 

0.1000 x 10 

0.2500 x 10 

0.1000 x 10 

6 

6 

6 

( case  d2 - p. 18) 

0.4421 x 10 6 

0.3000 

- 

0.3943 x 10 

0.1593 x 10 

6 

6 

Ref. 6 Value 

0.2600 x 10 6 

0.3000 

0.1000 x 10 

0.2500 x 10 

0.1000 x 10 

6 

6 

6 

0.4238 x 10 6 

0.3000 

0.1532 x 10 

0.3746 x 10 

6 

6 

6 0.1521 x 10 
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Ef = 1.5600 x 10 6 

El  

4 2  1 

Gl2 

K23 

23 

(case d 3  - p. 18) 

1.1704 

0.3000 

0.6749 

0.2907 

1.0790 

0.3000 

0.2636 

0.5892 

0.2556 



. 

Table 6.  - Equat ions  for   e las t ic   constants   for   composi tes   with  uni-  
direct ional   re inforcing  f i laments   in   the 1 -direction. 

4, = 

A, = A, 



Table 7. - Equation  for  elastic  constants  for  composites  with  orthogonal 
reinforcing  f i laments  in  the 1 - and  2-direct ions.  

= A, 



Table 8 .  - Equations  for  elastic  constants  for  composites  with  reinforcing 



Table 9 .  - Equations  for  elastic  constants  for  composites  with  reinforcing  fila- 
ments  in  the 1 - 2' plane  and  making  angles of t30 degrees  and 90 degrees 
with thep   l d i r ec t ion .  

- 

A+= A, 

AJ = AJ 



Table 10. - Equations  for  elastic  constants  for  uni-directional  triangular 
glass  filaments ir the 1 -direction  in  epoxy  binder. 



Table 11. - Equations  for  elastic  constants  for  stretching  for  orthogonal, 
elliptical  filaments  aligned  in  the 1 - and 2 - directions  and having 
their  minor  axes  in  the  3-direction, 



Table 12. - Equations  for  elastic  constants  for  composites with  orthogonal 
reinforcing  filaments  in  the I - ,  2- ,  and 3 -  directions. 



I . 

Table 13. - Equations  for  elastic  constants  for  composites  with  reinforcing 
filaments  in the 1 - 2 ,   2 -  3 ,  and 1 - 3 planes  and at  three s c t s  of 
equal  angles (t e,, +e 2 ,  and +e 3)  to the 1 -, 2 -, and 3 -  directions. - - 



Table 13.- Continued. 

1 



Table 13. - Concluded. 



Table 14. - Generalized  equations for elast ic   constants ,   l ike   those of 
Table  bbut   with a var ie ty  of t ransverse   e f fec t iveness   fac tors .  

A, =A, 



Table 15. - Interrelationships  among  elastic  constants for use  in 
evaluations of the  var ious I s  of Table  14. P 

AJ = A2 
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TABLE 16. -VALUES OF  STRESS  CONCENTRATION  FACTOR  FOR  PHOTO- 
ELASTIC  SPECIMENS 

V 
@ 0 0 ::: 1 45O  90' f 

STRESS  CONCENTRATION  FACTOR SPECIMEN 

0.  30 -14. 5 19  11. 3 Round Holes 

Round  Inclusions 0. 5 1. 4 0. 6 

Round  Holes - 6. 5 6.4  5.4 

Round  Inclusions  0.5 1. 6 0 .5  
. 5 0  

Ell ipt ical   Holes  -1. 0 2. 7:::2 t 1. 3 

El l ipt ical   Inclusions 0 .4  0.5  0.1 

Round  Holes 

Round Inclusions 

-2 .7   2 .6   3 .7  

" " -- 
. 7 0  

:: On axis of load  and  holes  

2 
2:: Max.  value 
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Figure 1.  Variation of Elastic  Structural  Efficiency of Biaxial  Laminates 
of E  -Glas s Fibers in an Epoxy Matrix 
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Figure 2 6 .  Instability of Single  Filaments  Embedded in Silicone  Rubber  and 
Compressed in the  Fiber  Direction 
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Figure 27. Transverse  Plane  Strain Bulk Relaxation Modulus, K (t) for 
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Rigid Fiber  Composites 23 
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Figure 28. In-Plane Shear  Relaxation Modulus, G * (t),  for Rigid Fiber 
Composites 
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Figure 29. Transverse  Plane  Strain Bulk Creep  Compliance, kZ3 (t), for Rigid  Fiber  Composites t 
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Figure 31. Repeating  Element of Uni-Directionally  Reinforced  Composite 
Corresponding  to  that  for  the  Integrally  Stiffened Plate of Ref. 44 

Figure  32. Three-Dimensional  Angle  Notation U s e d  in Analysis. 
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Figure 34. Comparison of Stretching  Stiffness  in  the  1-direction El and the 
Related  Poisson's  Ratio V 2 1  Calculated by the I1Rule of Mixtures" 
or Laminate Analyses  (Solid  Curves)  and by the  Present  Analysis 
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Figure 35. Comparison of Stretching  Stiffness  in  the  1-Direction  E1  Calculated 
by Laminate  Analysis  (x-Points) and the  Present  Analysis  (the 
Curves)  for  Orthogonal  Filaments  in  the 1- and  2-Directions 
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Figure 36. Cornparisonof  Stretching  Stiffness  in  the  1-Direction  El  Calculated 
by  Laminate  Analysis  (x-Points) and the  Present  Analysis  (the 
Curve) for Bi-Directional  Reinforcement in the  1-2  Plane  with 
Filaments  at  Angles * e  to  the  1-Direction 
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Figure 39. Ratio of Transverse  Stiffnesses of Epoxy Composites Having 
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Figure 40. Evaluation of Enhancement of Transverse  Stiffness  Provided by 
4 to  1 Aspect  Ratio  Elliptical  Cross-Section  Glass  Filaments  in 
Epoxy  Binder 
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Figure 41. Evaluation of Enhancement of Transverse  Stiffness  Provided by 
4 to  1  Aspect  Ratio  Elliptical  Cross-Sectional  Filaments of Boron 
in Epoxy 
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Figure 42. Evaluation of Enhancement of Transverse  Stiffness  Provided  to 
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Figure  43. Schematic  Representation of Orientations of Orthogonal, Skew 
Pairs of Filamentary  Reinforcements  Considered in Figures  44-48 
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Figure 44. Stretching  Stiffnesses of Composites  with  Three  Orthogonal, 
Skew Pairs of Filamentary  Reinforcements  with  Equal Volume 
.Fractions in Each  Direction 
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Figure 45. Shearing  Stiffnesses of Composites with Three  Orthogonal Skew 
Pairs  of Filamentary  Reinforcements  with  Equal Volume Fractions 
in  Each  Direction 
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Figure 46. Stretching  Stiffnesses of Composites  with  Three Orthogonal. 
Skew Pairs of Filamentary  Reinforcements, with  Different 
Volume  Fractions in the  Three  Directions 
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Figure 47. Shearing  Stiffnesses of Composites  with  Three  Orthogonal, Skew 
Pairs of Filamentary  Reinforcements,  with  Different  Volume 
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Figure 48. Ratio of Stretching  Stiffness  to  Shearing  Stiffness as Measured by 
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Figure  49. Epoxy Test  Specimens  with  Aluminum  Inclusions of Various  Configurations Used t o  Measure 
Transverse   S t i f fnesses  



Figure 50. Typical  Test  Set-up  for  Measurement of Elastic  Properties of Enlarged  Models of Uni- 
Directionally  Reinforced  Composites 
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Figure 51. Transverse  Stiffnesses of Solid, Round and  Elliptical  Aluminum 
Inclusions in Epoxy,  and Comparisons  with  Predictions.  (Ellipses 
Loaded in the  Direction of the Major  Axis.) 
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Figure 52. Transverse  Stiffnesses of Elliptical Aluminum Inclusions in 
Epoxy  Loaded in the Direction of the Ellipse Minor Axis 
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Figure 53. Transverse  St i f fnesses  of Round  Aluminum  Inclusions of Two 
Hollowness  Ratios (a ), and  Comparison  with  Predictions 
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Figure 54. Transverse  Stiffness of Epoxy  with  Holes of Various  Shapes  and 
Volume  Fractions,  and  Comparison  with  Predictions 
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Figure 55. Poisson's  Ratios  for  Aluminum  Inclusions in Epoxy for Transverse 
Loadings (Inclusion  Shape  Indicated by Plotted  Symbols) 
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Figure 56. Photoelastic  Patterns  for  Regular  Arrays of Round  Holes  Loaded 
in  Vertical  Direction of Page 



Figure 57. Photoelastic  Patterns  for  Regular  Arrays of Round,  Solid 
Inclusions  Loaded in Vertical  Direction of Page 
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Figure 58. Photoelastic  Patterns  for  Elliptical  Holes and Solid  Inclusions 
(5070 Volume  Fraction)  with Load Applied  Along Major Axis 
Direction 
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Figure 59. Isoclinics  and  Isostatics  Measured  for  Round  Holes  and  Inclusions 
at v = 0. 5. (Load in Vertical  Direction of Page) f 

220 



HOLES 

INCLUSIONS 

Figure 60. Isoclinics and Isostatics  Measured  for  Elliptical  Holes and 
Inclusions at v = 0 . 5 .  (Load in Direction of Ellipse Major Axis )  f 
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